You should disconnect all wires from the circuit or make sure the switch is off or batteries are out
Answer:
12.267 seconds approximately.
Explanation:
The units can be simplified into m/s, in which case you would have 61000/3600. Simplify that to 16 and 17/18. This is your meters per second, so multiply that by .724 to get the answer.
- The mechanic did 5406 Joules of work pushing the car.
That's the energy he put into the car. When he stops pushing, all the energy he put into the car is now the car's kinetic energy.
- Kinetic energy = (1/2) (mass) (speed²)
And there we have it
- The car's mass is 3,600 kg.
- Its speed is 'v' m/s .
- (1/2) (mass) (v²) = 5,406 Joules
(1/2) (3600 kg) (v²) = 5406 joules
1800 kg (v²) = 5406 joules
v² = (5406 joules) / (1800 kg)
v² = (5406/1800) (joules/kg)
= = = = = This section is just to work out the units of the answer:
- v² = (5406/1800) (Newton-meter/kg)
- v² = (5406/1800) (kg-m²/s² / kg)
= = = = =
v = √(5406/1800) m/s
<em>v = 1.733 m/s</em>
Answer:
cold cathode fluorescent lamp
Explanation:
A cold cathode fluorescent lamp (CCFL) is a lighting system that uses two phenomena: electron discharge and fluorescence.
CCFLs are mainly used as light sources for backlights, since they are compact and durable than ordinary fluorescent lamps. They exhibit a wide range of brightness and color (color temperature and chromaticity) that can be achieved by varying the pressure and type of the material injected into the glass tube. The thickness and type of the phosphor used to coat the inner wall of the tube also plays a role in altering the color and brightness.