Answer:
f=896Hz
Explanation:
Given data
Vs(speed of the ambulance)={(104 km/h)*(1000m*(1 h/3600)}=28.9m/s
f(frequency of the ambulance siren)=821 Hz
v(speed of sound)=345 m/s
Vo(speed of the observer)=0 m/s
To find
f(The ambulance is approaching the person)
Solution
From Doppler effect

As the ambulance approaches the we assign a positive sign for speed "vs" of the ambulance
So

Substitute the values from given data

Answer:
All of teh above except A
Explanation:
Answer:
38.6 mi/h
Explanation:
7.4 mi/h = 7.4mi/h * (1/60)hour/min * (1/60) min/s = 0.00206 mi/s
Let v (mi/s) be your original speed, then the time t it takes to go 1 mi/s is
t = 1/v
Since you increase v by 0.00206 mi/s, your time decreases by 15 s, this means
t - 15 = 1/(v+0.00206)
We can substitute t = 1/v to solve for v

We can multiply both sides of the equation with v(v+0.00206)
v+0.00206 - 15v(v+0.00206) = v

v = -0.01278 or v = 0.01
0724 mi/s
Since v can only be positive we will pick v = 0.010724 mi/s or 0.010724*3600 = 38.6 mi/h
2. Groups
3.Ion
4.NonPolar
5.Metallic Bond
6.Make up most of the atom's mass
7.Atomic Number
8.Seven
Answer:
(a) Tangential velocity will be 38.648 m/sec
(b) Acceleration will be 
Explanation:
We have given radius r = 11.2 m
Angular speed 
(a) We have to find the tangential velocity
We know that tangential velocity is given by

(b) We know that acceleration is given by
