1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
2 years ago
6

two astronauts are taking a spacewalk outside the International Space Station the first astronaut has a mass of 64 kg the second

has a mass of 58.2 kg initially both astronauts push against each other giving the first astronauts final velocity of .8m/s to the left if the momentum of the system is conserved what is the final velocity of the second person
Physics
1 answer:
Fittoniya [83]2 years ago
5 0

Answer:

Approximately 0.88\; {\rm m \cdot s^{-1}} to the right (assuming that both astronauts were originally stationary.)

Explanation:

If an object of mass m is moving at a velocity of v, the momentum p of that object would be p = m\, v.

Since momentum of this system (of the astronauts) conserved:

\begin{aligned} &(\text{Total Final Momentum}) \\ &= (\text{Total Initial Momentum})\end{aligned}.

Assuming that both astronauts were originally stationary. The total initial momentum of the two astronauts would be 0 since the velocity of both astronauts was 0\!.

Therefore:

\begin{aligned} &(\text{Total Final Momentum}) \\ &= (\text{Total Initial Momentum})\\ &= 0\end{aligned}.

The final momentum of the first astronaut (m = 64\; {\rm kg}, v = 0.8\; {\rm m\cdot s^{-1}} to the left) would be p_{1} = m\, v = 64\; {\rm kg} \times 0.8\; {\rm m\cdot s^{-1}} = 51.2\; {\rm kg \cdot m \cdot s^{-1}} to the left.

Let p_{2} denote the momentum of the astronaut in question. The total final momentum of the two astronauts, combined, would be (p_{1} + p_{2}).

\begin{aligned} & p_{1} + p_{2} \\ &= (\text{Total Final Momentum}) \\ &= (\text{Total Initial Momentum})\\ &= 0\end{aligned}.

Hence, p_{2} = (-p_{1}). In other words, the final momentum of the astronaut in question is the opposite of that of the first astronaut. Since momentum is a vector quantity, the momentum of the two astronauts magnitude (51.2\; {\rm kg \cdot m \cdot s^{-1}}) but opposite in direction (to the right versus to the left.)

Rearrange the equation p = m\, v to obtain an expression for velocity in terms of momentum and mass: v = (p / m).

\begin{aligned}v &= \frac{p}{m} \\ &= \frac{51.2\; {\rm kg \cdot m \cdot s^{-1}}}{64\; {\rm kg}} && \genfrac{}{}{0}{}{(\text{to the right})}{} \\ &\approx 0.88\; {\rm m\cdot s^{-1}} && (\text{to the right})\end{aligned}.

Hence, the velocity of the astronaut in question (m = 58.2\; {\rm kg}) would be 0.88\; {\rm m \cdot s^{-1}} to the right.

You might be interested in
Which is capeble of housing astronaughts while they conduct reasearch
dusya [7]

Answer:

2

Explanation:

2

5 0
3 years ago
Read 2 more answers
If I drop a watermelon from the top of one of the tower dorms at CSU, and it takes 3.34 seconds to hit the ground, calculate how
WINSTONCH [101]
T= 3.34

Vi= 0

A= 9.81

D= ?

d=Vit+1/2at^2

d= 1/2(9.81)(3.34)2

d= 54.7 or 55 meters tall
4 0
3 years ago
In one cycle, a heat engine takes in 1000 J of heat from a high-temperature reservoir, releases 600 J of heat to a lower-tempera
Talja [164]

Answer:

η = 40 %  

Explanation:

Given that

Qa ,Heat addition= 1000  J

Qr,Heat rejection= 600 J

Work done ,W= 400 J

We know that ,efficiency of a engine given as

\eta=\dfrac{W(net)}{Q(heat\ addition)}

Now by putting the values in the above equation ,then we get

\eta=\dfrac{400}{1000}

η = 0.4

The efficiency in percentage is given as

η = 0.4  x 100 %

η = 40 %

Therefore the answer will be 40%.

4 0
3 years ago
Muscles make up ore than __ of a person body?<br>a.10<br>b.25<br>c40<br>d.75
exis [7]
40 percent of your body
8 0
3 years ago
Read 2 more answers
Write a numerical expression for the emissive intensity (in W/m^2.sr) coming out of a tiny hole in an enclosure of surface tempe
stiks02 [169]

Answer:

6.0 × 10^{11} W/m^{2}

Explanation:

From Wien's displacement formula;

Q = e AT^{4}

Where: Q is the quantity of heat transferred, e is the emissivity of the surface, A is the area, and T is the temperature.

The emissive intensity = \frac{Q}{A} = eT^{4}

Given from the question that: e = 0.6 and T = 1000K, thus;

emissive intensity = 0.6 × (1000)^{4}

                             = 0.6 × 1.0 × 10^{12}

                             = 6.0 × 10^{11} \frac{W}{m^{2} }

Therefore, the emissive intensity coming out of the surface is 6.0 × 10^{11} W/m^{2}.

3 0
3 years ago
Other questions:
  • Imagine that you have two marbles on a table. You roll one marbles towards another. When the marble collide, the marble at rest
    8·1 answer
  • Speedy Sue, driving at 34.0 m/s, enters a one-lane tunnel. She then observes a slow-moving van 160 m ahead traveling at 5.40 m/s
    6·2 answers
  • Two identical soccer balls are rolled towards each other. What will be true after they collide head-on
    12·2 answers
  • 3
    9·1 answer
  • Suppose that the hatch on the side of a Mars lander is built and tested on Earth so that the internal pressure just balances the
    9·1 answer
  • the pilot of a new stealth helicopter which has a mass of 15000 kg and was traveling 180 m / s accelerated to 250 m / s in six s
    9·1 answer
  • Que carro ese que está en la foto
    13·2 answers
  • 3. Sodium-24 has a half-life of 15 hours. If a sample of sodium-24 has an
    7·1 answer
  • What is Archimedes principle?​
    9·1 answer
  • Need help ASAP, 1 MC
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!