Answer:
306 m/s
Explanation:
Law of conservation of momentum
m1v1 + m2v2 = (m1+m2)vf
m1 is the bullet's mass so it is 0.1 kg
v1 is what we're trying to solve
m2 is the target's mass so it is 5.0 kg
v2 is the targets velocity, and since it was stationary, its velocity is zero
vf is the velocity after the target is struck by the bullet, so it is 6.0 m/s
plugging in, we get
(0.1 kg)(v1) + (5.0 kg)(0 m/s) = (0.1 kg + 5.0 kg)(6.0 m/s)
(0.1)(v1) + 0 = 30.6
(0.1)(v1) = 30.6
v1 = 306 m/s
Answer:
calculated the speed of light over a short distance
Explanation:
Albert Michelson <u>was an American physicist who conducted an experiment regarding the speed of light in the air 1880s.</u> He believed in the existence of "aether," a field of space that is deemed necessary for transporting electromagnetic forces. In order to do this, he setup a device in order to accurately measure the speed of light in in aether. His device is now known as <u>"Michelson interferometer." </u><em>The result was actually negative. </em>
In order to make his experiment even more accurate, he collaborated with Edward Morley, a famous American scientist. Although the result failed, together, they were able to improve and come with the a standard length of light. This calculated the speed of light over a short distance, which was the significant result of Michelson's experiment.
Thus, this explains the answer.
Answer:
Option D
+2
Explanation:
We know that Calcium has 20 electrons and 20 protons. It lost two electrons, it has 20 protons, but only 18 electrons. This makes calcium a positive ion with a charge of +2.
The element of art that creates edges of shapes and visual cues for the viewer in terms of both motion and space is line. The correct option among all the options that are given in the question is the third option or option "c". The lines have the ability to create a sense of motion when drawn in spaces.
I'm not sure if this is correct but try 18,000