Answer:
F = - K x
a) K = 1.3 kg * 9.8 m/s^2 / .096 m = 133 kg/sec^2
b) ω = (K/m)^1/2 angular frequency of SHM
ω = (133 / 1.3)^1/2 = 10.1 / sec
f = 2 π ω = 6.28 * 10.1 / sec = 63.5 / sec
P = 1/f = .0157 sec
Before the impact, let the velocity of the baseball was v m/s.
After being hit by the bat its velocity is -2v
So, change in velocity, Deltav=v-(-2v)=3v
Acceleration is defined as the rate of change in velocity, i.e. actual change in velocity divided by the time taken to change it. Time taken to change velocity is the time of actual contact of the bat and ball, i.e. 0.31 s.
a=(Deltav)/(Deltat)
=(3v)/0.37
Therefore, a/v=3/0.31=9.7 s^-1
So, the ratio of acceleration of the baseball to its original velocity is 9.7.
Answer:
The x-coordinate of the particle is 24 m.
Explanation:
In order to obtain the x-coordinate of the particle, you have to apply the equations for Two Dimension Motion
Xf=Xo+Voxt+0.5axt²(I)
Yf=Yo+Voyt+0.5ayt² (II)
Where Xo, Yo are the initial positions, Xf and Yf are the final positions, Vox and Voy are the initial velocities, ax and ay are the accerelations in x and y directions, t is the time.
The particle starts from rest from the origin, therefore:
Vox=Voy=0
Xo=Yo=0
Replacing Yf=12, Yo=0 and Voy=0 in (I) and solving for t:
12=0+(0)t+ 0.5(1.0)t²
12=0.5t²
Dividing by 0.5 and extracting thr squareroot both sides:
t=√12/0.5
t=√24 = 2√6
Replacing t=2√6, ax=2.0,Xo=0 and Vox=0 in (I) to obain the x-coordinate:
Xf=0+0t+0.5(2.0)(2√6)²
Xf= 24 m
Answer:
Velocity
Explanation:
<u>Velocity</u> is the rate that an object moves in certain direction.