1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
2 years ago
9

If our planet was twice as far away how would the Earth’s orbit change?

Physics
1 answer:
Tomtit [17]2 years ago
5 0

Answer:

One of the indirect proofs that orbits change is actually in the growth of our own teeth when we were children. our teeth are some of the most basic, and primitive

parts of our bodies. They grow on a 9 day cycle, which was an ancient full moon to full moon cycle when the Earth and the Moon were a lot smaller, and closer together, and the co-orbital period was only 9 days, not the 29.5 days that it is currently.

So Given any two " Planets " that co-orbit a common gravitational center, the larger planet will grow larger far faster than the smaller planet, and the larger planet will accelerate the smaller planet to a higher orbit with a longer period, and decelerate itself to a lower orbit with a longer period, and the absolute value of the center to center distance will increase, and the orbital period will increase. The two orbs and their common gravitational center will remain co-linear through out the gradual growing and changing process.

This is an important process for the enlargement of the solar system as time passes, and an important process for larger galaxies as they attract and merge with smaller galaxies.

All of the planets grow larger at an accelerating rate, and thus systems spiral outward concentrating mass into larger and fewer galaxies, solar systems, and planet - moon systems.

You might be interested in
Gravitational notes of physics ​
Pachacha [2.7K]

Answer:

Every object in the universe attracts other object by a force of attraction, called gravitation, which is directly proportional to the product of masses of the objects and inversely proportional to the square of distance between them. This is called Law of Gravitation or Universal Law of Gravitation.

Let masses (M) and (m) of two objects are distance (d) apart. Let F be the attractional force between two masses.

Importance of The Universal Law of Gravitation

It binds us to the earth.

It is responsible for the motion of the moon around the earth.

It is responsible for the motion of planets around the Sun.

Gravitational force of moon causes tides in seas on earth.

Free Fall

When an object falls from any height under the influence of gravitational force only, it is known as free fall.

Acceleration Due to Gravity

When an object falls towards the earth there is a change in its acceleration due to the gravitational force of the earth. So this acceleration is called acceleration due to gravity.

The acceleration due to gravity is denoted by g.

The unit of g is same as the unit of acceleration, i.e., ms−2

Mathematical Expression for g

From the second law of motion, force is the product of mass and acceleration.

F = ma

For free fall, acceleration is replaced by acceleration due to gravity.

Therefore, force becomes:

F = mg ….(i)

But from Universal Law of Gravitation,

Factors Affecting the Value of g

As the radius of the earth increases from the poles to the equator, the value of g becomes greater at the poles than at the equator.

As we go at large heights, value of g decreases.

To Calculate the Value of g

Value of universal gravitational constant, G = 6.7 × 10–11 N m2/ kg2,

Mass of the earth, M = 6 × 1024 kg, and

Radius of the earth, R = 6.4 × 106 m

Putting all these values in equation (iii), we get:

Thus, the value of acceleration due to gravity of the earth, g = 9.8 m/s2.

Difference between Gravitation Constant (G) and Gravitational Acceleration (g)

S. No.

Gravitation Constant (G)

Gravitational acceleration (g)

1.

Its value is 6.67×10-11Nm2/kg2.

Its value is 9.8 m/s2.

2.

It is a scalar quantity.

It is a vactor quantity.

3.

Its value remains constant always and everywhere.

Its value varies at various places.

4.

Its unit is Nm2/kg2.

Its unit is m/s2.

Motion of Objects Under the Influence of Gravitational Force of the Earth

Let an object is falling towards earth with initial velocity u. Let its velocity, under the effect of gravitational acceleration g, changes to v after covering the height h in time t.

Then the three equations of motion can be represented as:

Velocity (v) after t seconds, v = u + ght

Height covered in t seconds, h = ut + ½gt2

Relation between v and u excluding t, v2 = u2 + 2gh

The value of g is taken as positive in case of the object is moving towards earth and taken as negative in case of the object is thrown in opposite direction of the earth.

Mass & weight

Mass (m)

The mass of a body is the quantity of matter contained in it.

Mass is a scalar quantity which has only magnitude but no direction.

Mass of a body always remains constant and does not change from place to place.

SI unit of mass is kilogram (kg).

Mass of a body can never be zero.

Weight (W)

The force with which an object is attracted towards the centre of the earth, is called the weight of the object.

Now, Force = m × a

But in case of earth, a = g

∴ F = m × g

But the force of attraction of earth on an object is called its weight (W).

∴ W = mg

As weight always acts vertically downwards, therefore, weight has both magnitude and direction and thus it is a vector quantity.

The weight of a body changes from place to place, depending on mass of object.

The SI unit of weight is Newton.

Weight of the object becomes zero if g is zero.

Weight of an Object on the Surface of Moon

Mass of an object is same on earth as well as on moon. But weight is different.

Weight of an object is given as,

Hence, weight of the object on the moon = (1/6) × its weight on the earth.

Try the following questions:

Q1. State the universal law of gravitation.

Q2. When we move from the poles to the equator, the value of g decreases. Why?

Q3. If two stones of 150 gm and 500 gm are dropped from a height, which stone will reach the surface of the earth first and why ?

Q4. Differentiate between weight and mass.

Q5. Why is the weight of an object on the moon 1/6th its weight on the earth??

7 0
3 years ago
A sound wave has a frequency of 425Hz. What is the period of this wave? a) 0.00235 b) 0.807 c) 425 d) 850
swat32

the answer is a) 0.00235 because 1/425=0.00235. hope I helped!

3 0
3 years ago
Which letter on the diagram below represents the trough of a wave?
Nikitich [7]

A would be the wavelength, C would be a crest, D would be the amplitude, leaving B which is the trough.

8 0
3 years ago
Read 2 more answers
Select all that apply. which of the following astronomers supported the sun-centered system? tycho brahe johannes kepler coperni
Alex73 [517]
<h3 />

-Tycho Brahe and

-Ptolemy

<h3 />
  • The sun is a hot ball of glowing gases which is a star whose gravity holds the solar system together and also keeping all the planet and smallest particles of debris in its orbit.
3 0
3 years ago
Read 2 more answers
Why are plane mirrors and convex mirrors unable to form real images
Schach [20]
Because it reverses an image there for making the objects appear on opposite side
4 0
3 years ago
Other questions:
  • Help?! *20 points*<br> What can happen during an earthquake ?
    5·2 answers
  • A concave lens always creats an image that is smaller and upright
    10·1 answer
  • Which has a stronger attractions among its sub microscopic particles of a solid at 25°C or a gas and 25°C
    10·1 answer
  • Nguồn phát của tia X
    12·1 answer
  • A cruise ship travels across a river at 25 meters per minute. If the river is 6200 meters wide, how long
    6·1 answer
  • Help me, what is the shape of solid?​
    14·2 answers
  • Poop<br> ppppppppppppppppppppppppppppppp
    13·2 answers
  • HOW MANY SECONDS ARE THERE IN 3 MONTHS OF MARCH​
    9·1 answer
  • Define refractive index.​
    15·2 answers
  • Using a refracting telescope, you observe the planet Mars when it is 1.99×1011 m from Earth. The diameter of the telescope's obj
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!