Answer:
the molar mass of any element can be determined by finding the atomic mass of the element on the periodic table for example, if the atomic mass of sulfer is 32.066 amu, then it's molar mass is 32.066 g / mol
Answer:
Explanation:
When a salt is dissolved , it increases the boiling point . Increase in boiling point depends upon number of ions . So it is a colligative property .
.19 m AgNO₃ . Each molecule will ionize into two ions . So effective molar concentration is 0.19 x 2 = .38 m
0.17 m CrSO4.Each molecule will ionize into two ions . So effective molar concentration is 0.17 x 2 = .34 m
0.13 m Mn(NO₃)₂. Each molecule will ionize into three ions . So effective molar concentration is 0.13 x 3 = .39 m
0.31 m Sucrose(nonelectrolyte). Molecules will not ionize . So effective molar concentration is 0.31 x 1 = .31 m
Higher the molar concentration , greater the depression in boiling point .
So lowest boiling point is 0.13 m Mn(NO₃)₂.
second highest boiling point is 0.19 m AgNO3.
Third lowest boiling point is 0.17 m CrSO4
Highest boiling point or lowest depression 0.31 m Sucrose.
a . 4
b . 1
c . 2
d . 3
Answer: 4.1 g of barium precipitated.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
Given : moles of barium = 0.030
Molar mass of barium = 137 g/mol
x= 4.1 g
Thus there are 4.1 g of barium that precipitated.