Explanation:
1)

Mass of NaOH = m
MOlar mass of NaOH = 40 g/mol
Volume of NaOH solution = 1.00 L
Molarity of the solution= 1.00 M


A student can prepare the solution by dissolving the 40. grams of NaOH in is small volume of water and making that whole volume of solution to volume of 1 L.
Upto two significant figures mass should be determined.
2)
(dilution equation)
Molarity of the NaOH solution = 
Volume of the solution = 
Molarity of the NaOH solution after dilution = 
Volume of NaOH solution after dilution= 


A student can prepare NaOH solution of 1.00 M by diluting the 0.500 L of 2.00 M solution of NaOH with water to 1.00 L volume.
Upto three significant figures volume should be determined.
Answer:
0.5875L
Explanation:
concentration = mole/ volume
n(LiCl) = 20 / (7 + 35.5) = 0.47 mol
volume = mole / conc.
volume = 0.47 /0.8
= 0.5875 dm³ = 0.5875L
After reading a book about parrots, Tani wants to
learn more about them. The question that could be answered through scientific
investigation is letter B, ‘<span>What
substances make up an eggshell?’ The other choices cannot be answered through
scientific investigation.</span>
Answer:
A general instrument, which is used to determine the concentration of hydrogen ion within the aqueous solution is known as a pH meter. The meter helps in determining the alkalinity or acidity, which is articulated in the form of pH. It is also called a potentiometric pH meter as it helps in finding the variation in electrical potential between a reference electrode and a pH electrode. This electrical potential variation is associated with the pH of the solution.
The potentiometric pH meter comprises a pair of electrodes and a basic electronic amplifier, some may even comprise a combination electrode and some sort of display that demonstrates pH units. The potentiometric pH meter generally exhibits a reference electrode or a combination electrode, and a glass electrode. The probes or electrodes are administered within a solution whose pH values are needed to be determined.