Answer :
Option A) 2.00 eV
Explanation : The conversion of J to eV is done with the following formula;
Here, we have the value of particle in terms of Joules which is 3.2 X
So, on substituting we get,
= 3.2 X
X
= 1.99 eV so, it can be rounded off to 2.00 eV.
Answer:
91.16% has decayed & 8.84% remains
Explanation:
A = A₀e⁻ᵏᵗ => ln(A/A₀) = ln(e⁻ᵏᵗ) => lnA - lnA₀ = -kt => lnA = lnA₀ - kt
Rate Constant (k) = 0.693/half-life = 0.693/10³yrs = 6.93 x 10ˉ⁴yrsˉ¹
Time (t) = 1000yrs
A = fraction of nuclide remaining after 1000yrs
A₀ = original amount of nuclide = 1.00 (= 100%)
lnA = lnA₀ - kt
lnA = ln(1) – (6.93 x 10ˉ⁴yrsˉ¹)(3500yrs) = -2.426
A = eˉ²∙⁴²⁶ = 0.0884 = fraction of nuclide remaining after 3500 years
Amount of nuclide decayed = 1 – 0.0884 = 0.9116 or 91.16% has decayed.
Hello!
According to the
Charles' Law, the volume of a gas is proportional to temperature when pressure is constant. When going from New York to Florida, if the pressure is left constant
the volume of the tires will increase.The final volume of the tires can be calculated from the following equation, derived from Charles' Law:
Have a nice day!
<em>Transparent because you can see right through it </em>
A + BC ---> AB + C
So here one reactant (A) is accepting a group which is being given by another compound (BC) however the A is not giving any group / element or ion
So this single displacement
Similarly in the given reaction
the anion OH- is only being replaced
The element Ca accepts OH- and H2O loses the same group to form new element H2
So the correct answer is
Single replacement also known as single displacement.