Answer:
Part a: <em>Units of k is </em>
<em> where reaction is first order in A and second order in B</em>
Part b: <em>Units of k is </em>
<em> where reaction is first order in A and second order overall.</em>
Part c: <em>Units of k is </em>
<em> where reaction is independent of the concentration of A and second order overall.</em>
Part d: <em>Units of k is </em>
<em> where reaction reaction is second order in both A and B.</em>
Explanation:
As the reaction is given as

where as the rate is given as
![r=k[A]^x[B]^y](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5Ex%5BB%5D%5Ey)
where x is the order wrt A and y is the order wrt B.
Part a:
x=1 and y=2 now the reaction rate equation is given as
![r=k[A]^1[B]^2](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E1%5BB%5D%5E2)
Now the units are given as
![r=k[A]^1[B]^2\\M/s =k[M]^1[M]^2\\M/s =k[M]^{1+2}\\M/s =k[M]^{3}\\M^{1-3}/s =k\\M^{-2}s^{-1} =k](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E1%5BB%5D%5E2%5C%5CM%2Fs%20%3Dk%5BM%5D%5E1%5BM%5D%5E2%5C%5CM%2Fs%20%3Dk%5BM%5D%5E%7B1%2B2%7D%5C%5CM%2Fs%20%3Dk%5BM%5D%5E%7B3%7D%5C%5CM%5E%7B1-3%7D%2Fs%20%3Dk%5C%5CM%5E%7B-2%7Ds%5E%7B-1%7D%20%3Dk)
The units of k is 
Part b:
x=1 and o=2
x+y=o
1+y=2
y=2-1
y=1
Now the reaction rate equation is given as
![r=k[A]^1[B]^1](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E1%5BB%5D%5E1)
Now the units are given as
![r=k[A]^1[B]^1\\M/s =k[M]^1[M]^1\\M/s =k[M]^{1+1}\\M/s =k[M]^{2}\\M^{1-2}/s =k\\M^{-1}s^{-1} =k](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E1%5BB%5D%5E1%5C%5CM%2Fs%20%3Dk%5BM%5D%5E1%5BM%5D%5E1%5C%5CM%2Fs%20%3Dk%5BM%5D%5E%7B1%2B1%7D%5C%5CM%2Fs%20%3Dk%5BM%5D%5E%7B2%7D%5C%5CM%5E%7B1-2%7D%2Fs%20%3Dk%5C%5CM%5E%7B-1%7Ds%5E%7B-1%7D%20%3Dk)
The units of k is 
Part c:
x=0 and o=2
x+y=o
0+y=2
y=2
y=2
Now the reaction rate equation is given as
![r=k[A]^0[B]^2](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E0%5BB%5D%5E2)
Now the units are given as
![r=k[B]^2\\M/s =k[M]^2\\M/s =k[M]^{2}\\M^{1-2}/s =k\\M^{-1}s^{-1} =k](https://tex.z-dn.net/?f=r%3Dk%5BB%5D%5E2%5C%5CM%2Fs%20%3Dk%5BM%5D%5E2%5C%5CM%2Fs%20%3Dk%5BM%5D%5E%7B2%7D%5C%5CM%5E%7B1-2%7D%2Fs%20%3Dk%5C%5CM%5E%7B-1%7Ds%5E%7B-1%7D%20%3Dk)
The units of k is 
Part d:
x=2 and y=2
Now the reaction rate equation is given as
![r=k[A]^2[B]^2](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E2%5BB%5D%5E2)
Now the units are given as
![r=k[A]^2[B]^2\\M/s =k[M]^2[M]^2\\M/s =k[M]^{2+2}\\M/s =k[M]^{4}\\M^{1-4}/s =k\\M^{-3}s^{-1} =k](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E2%5BB%5D%5E2%5C%5CM%2Fs%20%3Dk%5BM%5D%5E2%5BM%5D%5E2%5C%5CM%2Fs%20%3Dk%5BM%5D%5E%7B2%2B2%7D%5C%5CM%2Fs%20%3Dk%5BM%5D%5E%7B4%7D%5C%5CM%5E%7B1-4%7D%2Fs%20%3Dk%5C%5CM%5E%7B-3%7Ds%5E%7B-1%7D%20%3Dk)
The units of k is 
Answer: 2.78 moles of molecular oxygen will occupy 62.22 liters.
Explanation:
Answer:
B
Explanation:
When water is at the surface of the ground, it evaporates and goes back to the clouds for which causes it to rain therefore returning water back.
Answer:
Your hypothesis is an educated guess of what the end results of an experiment will be, using what you already know about your experiment you are going to conduct. So when you receive your final results, if your hypothesis is correct, or even somewhat correct then you know that it is supported by your results. For example, if I were to conduct the Coca-Cola and Mentos experiment, I could make a hypothesis that the Coca-Cola will have a bigger eruption when I add more than one Mento to the bottle due to a higher amount of a chemical with the addition of each mento. When I receive my results that the eruption was bigger each time, I know that my results supported my hypothesis.
Explanation:
-Hope this helped