Answer:
they stay a solid
Explanation:
breaks apart do to whether such as erosion
Answer:
it is very hard question for me sorry i cant solve it
Answer:
c > √(2ab)
Explanation:
In this exercise we are asked to find the condition for c in such a way that the results have been real
The given equation is
½ a t² - c t + b = 0
we can see that this is a quadratic equation whose solution is
t = [c ±√(c² - 4 (½ a) b)] / 2
for the results to be real, the square root must be real, so the radicand must be greater than zero
c² -2a b > 0
c > √(2ab)
Answer:
1). Average speed = 1.5 m per second
2). Average velocity = 1.5 m per second
Explanation:
1). Since, speed is a scalar quantity
Therefore, average speed of the trip =
From the graph attached,
Total distance covered = 10 + 10 + 20 + 0 + 20 + 30
= 90 meters
Total time taken = 60 seconds
Average speed =
= 1.5 meter per second
2). Velocity is a vector quantity.
Therefore, average velocity =
=
=
= 1.5 meter per second
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."
Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as
Where
and the position vector
using the determinant method to expand the cross product in order to determine the torque we have
by expanding we arrive at
since we have determine the vector value of the toque, we now compare with the torque value given in the question
if we directly compare the j coordinate we have