"Constant change of direction" simply means on a curve.
The examples provided don't show a durn thing.
Answer:
0.661 m/s²
Explanation:
g = MG / r²
g = (1.31×10²² kg) (6.67×10⁻¹¹ m³/kg/s²) / (1.15×10⁶ m)²
g = 6.61×10⁻¹ m/s²
g = 0.661 m/s²
Answer
i'm not 100% sure but 1764
Explanation:
Work done = gravitational potential energy
Gravitational potential energy = mass(kg) × height(m) × gravitational field strength(N/kg)
We can assume that the student is on earth so the gravitational field strength is 9.8N/kg
So work done = 60 × 3×9.8
=1764
(if you need help calculating power but if you do just divide your answer by 12 and you will get 147)
Answer:
a = 52s²
Explanation:
<u>How to find acceleration</u>
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
<u>Solve</u>
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
Density depends on mass and volume so option D is correct answer. Hope this helps!