1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
3 years ago
14

A 1-kg iron frying pan is placed on a stove. The pan increases from 20°C to 250°C. If the same amount of heat is added to a pan

with a greater specific heat, what can you predict about the temperature of this second pan? A) The second pan would reach a lower temperature. B) The second pan would reach a higher temperature. C) The second pan would reach the same temperature. D) No conclusion can be made from this information.
Physics
2 answers:
Vera_Pavlovna [14]3 years ago
7 0

As the specific heat increases, the temperature change decrease. The second pan would reach a lower temperature.

sergejj [24]3 years ago
3 0

Here mass of the iron pan is given as 1 kg

now let say its specific heat capacity is given as "s"

also its temperature rise is given from 20 degree C to 250 degree C

so heat required to change its temperature will be given as

Q = ms \Delta T

Q = 1*s*(250 - 20)

Q = 1*s*230

now if we give same amount of heat to another pan of greater specific heat

so let say the specific heat of another pan is s'

now the increase in temperature of another pan will be given as

Q = ms'\Delta T

1*s*230 = 1* s' * \Delta T

now we have

\Delta T = (\frac{s}{s'})*230

now as we know that s' is more than s so the ratio of s and s' will be less than 1

And hence here we can say that change in temperature of second pan will be less than 230 degree C which shows that final temperature of second pan will reach to lower temperature

So correct answer is

<u>A) The second pan would reach a lower temperature.</u>

You might be interested in
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
an object at rest starts accelerating if it travels 30 meters to end up going 10 m/s what was it’s acceleration
vfiekz [6]

First we have to calculate the time taken to travel the distance 30 m, is

t = \frac{distance}{velocity} = \frac{30 \ m}{10 \ m/s } =  3 \ s.

Now from equation of motion,

v = u + at

Given, v = 10 \ m/s .

As object starts from rest, so  u = 0.

Substituting these values in above equation, we get

 10 \ m/s = 0 + a \times 3 \ s \\\\ a = \frac{10}{3}  = 3.33 \ m/s^2.

Thus, the acceleration is 3.33 \ m/s^2

3 0
3 years ago
Which law of physics relates electric fields and current
riadik2000 [5.3K]

Answer:

Ohms law

Explanation:

Which states that the current flowing through any cross-section of the conductor is directly proportional to the potential differenceapplied across its end, provided physical conditions like temperature and pressure remain constant.

7 0
3 years ago
The typical unit for a period used with Kepler's third law is
ollegr [7]
Well, if you're using the law to work with periods of Earth satellites,
then the most convenient unit is going to be 'hours' for the largest
orbits, or 'minutes' for the LEOs.

But if you're using it to work with periods of planets, asteroids, or
comets, then you'd be working in days or years.
6 0
3 years ago
What is the momentum of a 248 g rubber ball traveling at 30.0 m/s?
Vikentia [17]
<span>The answer is, 7.44 kg*m/s</span>
4 0
3 years ago
Other questions:
  • The cruise control of megan's truck is set at 65 miles per hour, but her actual speed may vary by as much as 5 miles per hour. W
    10·2 answers
  • 1. Monique is nine weeks into her pregnancy, and she had an appointment with her doc tor today. She is very happy and excited be
    7·1 answer
  • At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 8.00 ✕ 106 m/s pe
    12·1 answer
  • A beam of protons moves in a circle of radius 0.20 m. The protons move perpendicular to a 0.36-T magnetic field. (a) What is the
    10·1 answer
  • You have a working electrical parallel circuit with three light bulbs, then 1 bulb burns
    15·1 answer
  • What is the velocity?
    7·1 answer
  • Sa fait combien 2×5÷6​
    7·2 answers
  • An object experiencing uniform circular motion is accelerating. t/f
    10·1 answer
  • Select the star life cycle that is accurate.
    7·1 answer
  • The momentum of the moving depends on which among the given factors?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!