For A 53 g ice cube at −30◦C is dropped into a container of water at 0◦C, the amount of water that freezes onto the ice? is mathematically given as
x = 9.93 g
<h3>What is the amount of water that freezes onto the ice?</h3>
Where
Energy received = energy given out
Generally, the amount of water is mathematically given as
(53)(0.5)(30) = (80)(x)
Therefore
x = (49)(0.5)(16)/(80)
x = 9.93 g
In conclusion, the mass of water
x = 9.93 g
Read more about mass
brainly.com/question/15959704
Answer:
a) p = 4.96 10⁻¹⁹ kg m / s
, b) p = 35 .18 10⁻¹⁹ kg m / s
,
c) p_correst / p_approximate = 7.09
Explanation:
a) The moment is defined in classical mechanics as
p = m v
Let's calculate its value
p = 1.67 10⁻²⁷ 0.99 3. 10⁸
p = 4.96 10⁻¹⁹ kg m / s
b) in special relativity the moment is defined as
p = m v / √(1 –v² / c²)
Let's calculate
p = 1.67 10⁻²⁷ 0.99 10⁸/ √(1- 0.99²)
p = 4.96 10⁻¹⁹ / 0.141
p = 35 .18 10⁻¹⁹ kg m / s
c) the relationship between the two values is
p_correst / p_approximate = 35.18 / 4.96
p_correst / p_approximate = 7.09
Answer:
Stronger and harder than either of the pure metals
Explanation:
Answer:
1/4 λ film
Explanation:
Let L = total path length then L = 2 t where t is film thickness
There will be a 180 deg phase change at the air-film interface but no
phase change at the film-air interface
L = n * wavelength / 2 where n = 1, 3, 5, 7 etc
(the total path L must be an odd number of 1/2 wavelengths)
Or t = n * wavelength / 4 (the film must be an odd number
of 1/4 wavelengths thick)
1/4 λ film satisfies this condition
Note: Find the missing diagram in the attachment section.
The data must be reproducible: it means that the data will be reliable and representative and not that this data would lead to one conclusion and another data would lead to another.
Data being varied, unique or surprising does not have anything to do with acceptability of the conclusion.