Answer: the angle between the resultant vector and the vector of the 18 pound is 28°
Explanation:
given that data in the question; as its interpreted in the diagram below;
from the cosine rule, we know that;
a² = b² + c² - 2bc
so
(13)² = (6)² + (18)² - (2 × 6 × 18 ) cos∅
169 = 36 + 324 - 216cos∅
169 = 360 - 216cos∅
216cos∅ = 360 - 169
216cos∅ = 191
cos∅ = 0.8842
∅ = cos⁻¹ ( 0.8842 )
∅ = 27.8° ≈ 28° {nearest whole number}
Therefore the angle between the resultant vector and the vector of the 18 pound is 28°
K.E=0.5*mv²
v=square root 2ke/m
v= square root 2*8J/1 kg
v= 4 m/s
Answer:
The asteroid's acceleration at this point is
Explanation:
The equation that governs the trajectory of asteroid is given by :

The velocity of asteroid is given by :

At some point during the trip across the screen, the asteroid is at rest. It means, v = 0
So,
Acceleration,
Put t = 0.971 s

So, the asteroid's acceleration at this point is
and it is decelerating.
A pair of equal gravitational forces ... one in each direction ...
exists between every speck of mass in the universe and every
other speck of mass.