The signs of a chemical reaction are bubbles, heat an magnesium disappearing.
Answer:
I = 1.06886 N s
Explanation:
The expression for momentum is
I = F t = Δp
therefore the momentum is a vector quantity, for which we define a reference system parallel to the floor
Let's find the components of the initial velocity
sin 28.2 = v_y / v
cos 28.2= vₓ / v
v_y = v sin 282
vₓ = v cos 28.2
v_y = 42.8 sin 28.2 = 20.225 m / s
vₓ = 42.8 cos 28.2 = 37.72 m / s
since the ball is heading to the ground, the vertical velocity is negative and the horizontal velocity is positive, it can also be calculated by making
θ = -28.2
v_y = -20.55 m / s
v_x = 37.72 m / s
X axis
Iₓ = Δpₓ = 
since the ball moves in the x-axis without changing the velocity, the change in moment must be zero
Δpₓ = m
- m v₀ₓ = 0
v_{fx} = v₀ₓ
therefore
Iₓ = 0
Y axis
I_y = Δp_y = p_{fy} -p_{oy}
when the ball reaches the floor its vertical speed is downwards and when it leaves the floor its speed has the same modulus but the direction is upwards
v_{fy} = - v_{oy}
Δp_y = 2 m v_{oy}
Δp_y = 2 0.0260 (20.55)
= 1.0686 N s
the total impulse is
I = Iₓ i ^ + I_y j ^
I = 1.06886 j^ N s
Option B is the correct answer.
In a basketball game, a player shoots a jump shot then the floor pushes up on the player.
<h3>Newton's Third Law</h3>
Newton's third law states that when two bodies interact with each other, they apply forces to one another that are equal in magnitude and opposite in direction. The third law is also known as the law of action and reaction.
In the given situation, a player shoots a jump shot. It means that the player pushes the floor downward direction.
Newton's third law is applicable in this situation where the player pushes the floor downward direction, at the same time the floor pushes the player upward. The amount of force applied to the floor by the player is equal in magnitude and opposite in direction as compared to the force applied to the player by the floor.
Hence the option B is the correct answer.
To know more about Newton's third law, follow the link given below.
brainly.com/question/974124.
Answer:
The y-component of the car's position vector is 670m/s.
The x-component of the acceleration vector is -3, and the y-component is 40.
Explanation:
The displacement vector of the car with velocity

is the integral of the velocity.
Integrating
we get the displacement vector
:

Now if the initial position if the car is

then the displacement of the car at time
is


Now at
, we have

The y-component of the car's position vector is 670m/s.
The acceleration vector is the derivative of the velocity vector:

and at
it is

The x-component of the acceleration vector is -3, and the y-component is 40.