Answer: radon (atomic mass 222 amu
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
atomic mass of krypton= 83.8 amu
atomic mass of argon= 39.95 amu
atomic mass of xenon = 131.3 amu
atomic mass of radon= 222 amu
Thus as atomic mass of radon is highest, its rate of diffusion is slowest.
Answer:
The solution would need 13.9 g of KCl
Explanation:
0.75 m, means molal concentration
0.75 moles in 1 kg of solvent.
Let's think as an aqueous solution.
250 mL = 250 g, cause water density (1g/mL)
1000 g have 0.75 moles of solute
250 g will have (0.75 . 250)/1000 = 0.1875 moles of KCl
Let's convert that moles in mass (mol . molar mass)
0.1875 m . 74.55 g/m = 13.9 g
Answer: 173 g ( 0.17 kg in right accuracy)
Explanation: Amount in moles is n = N/Na = 2.0·10^24 / 6.022·10^23 (1/mol).
n = 3.32116 mol. M(Cr) = 52.00 g/mol and mass m = nM = 172.7 g
Answer:
Channeling often occurs in a packed tower This phenomenon takes place when the. ... ------------EFFECT IN TOWERS AND COLUMNS Towers or columns are the ... instruments such as HPLC(high performance liquid chromatography-columns )
Explanation:
Answer:
Final temperature of the gas is 576
.
Explanation:
As the amount of gas and pressure of the gas remains constant therefore in accordance with Charles's law:

where
and
are volume of gas at
and
temperature (in kelvin scale) respectively.
Here
,
and 
So
849 K = (849-273)
= 576 
So final temperature of the gas is 576
.