Answer:
a. the amount of work done on a system is dependent of pathway
Explanation:
The first law of thermodynamics states that the change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system.
ΔU = Q - W
Where;
Q, the net heat transfer into the system depends on the pathway
W, the net work done by the system also depends on the pathway
But, ΔU, the change in internal energy is independent of pathway
Therefore, the correct option is "A"
a. the amount of work done on a system is dependent of pathway
(1) Speed is the ratio of the total distance covered by the object and the total time it takes for him to finish it.
Speed = distance / time
In this item, we are given that the distance is 20 kilometers and that the time it takes for the trip is 2 hours. Substituting the known values,
Speed = 20 kilometers / 2 hours
speed = 20 km/h
(2) Velocity on the other hand takes into account the displacement of the object from his original position. It is assumed that Jeremie was basically back to his original position after two hours. Hence, the velocity is equal to zero.
Answer:
Explanation:
Volume will be largest when x = y = z
area of one face = 100 / 6
= 16.67 cm²
x² = 16.67
x = 4.08 cm
x = y = z = 4.08
Explanation:
It is given that,
Mass of bumper car, m₁ = 202 kg
Initial speed of the bumper car, u₁ = 8.5 m/s
Mass of the other car, m₂ = 355 kg
Initial velocity of the other car is 0 as it at rest, u₂ = 0
Final velocity of the other car after collision, v₂ = 5.8 m/s
Let p₁ is momentum of of 202 kg car, p₁ = m₁v₁
Using the conservation of linear momentum as :


p₁ = m₁v₁ = -342 kg-m/s
So, the momentum of the 202 kg car afterwards is 342 kg-m/s. Hence, this is the required solution.
Answer:0.147 N-m
Explanation:
Given
Diameter of Pulley 
radius 
mass of first object 
mass of second object 
Now both masses will exert a torque a on Pulley
Torque due to first Pulley 

Torque due to second mass on Pulley 

Total Torque by masses 

so we need to apply a torque of magnitude 0.147 N-m opposite to the direction of