Answer:
Energy is absorbed, and an emission line is produced.
Explanation:
Electrons are present and revolving continuously in the orbits that are present around the nucleus. The energy of electron are fixed and unable to move to other orbits due to the strong attractive force of the proton which is present in the nucleus of the atom. If the electron wants to jump from the first energy level to the second energy level, so the electron has to absorb enough energy which can overcome the attractive force of proton.
Scandium? Is that what you mean?
Boiling point<span> is the </span>temperature<span> at which the vapor pressure of the liquid equals the surrounding pressure.
Above boiling point point, liquid get converted into vapour.
Now, boiling point of water is 100 oC at room pressure. Room pressure is equal to 760 torr. Thus, at 100 oC, vapour pressure of water becomes equal to 760 torr.
Now, if external pressure is increased to 880 torr, more heat is to be supplied so that vapour pressure of water equals 880 torr.
So, at 880 torr, boiling point of water will be more than 100 oC. In present case, most like the boiling point of water is equal to 105 oC.
</span>
Answer:
20.5torr
Explanation:
Given parameters:
V₁ = 15L
P₁ = 8.2 x 10⁴torr
V₂ = 6 x 10⁴L
Unknown:
P₂ = ?
Solution:
To solve this problem we have to apply the claims of Boyle's law.
Boyle's law is given mathematically as;
P₁ V₁ = P₂V₂
where P₁ is the initial pressure
V₁ is the initial volume
P₂ is final pressure
V₂ is final volume
8.2 x 10⁴ x 15 = P₂ x 6 x 10⁴
P₂ = 20.5torr