Answer:
The phosphorus ylide reacts with the aldehyde or ketone to make an oxaphosphetane.
Explanation:
The Wittig reaction is a reaction that occurs between a phosphorus ylide and an aldehyde or ketone. The final products are an alkene and triphenyl phosphine oxide.
The first step in the reaction is the attack of the phosphorus ylide on the aldehyde or ketone. This is followed by attack of oxygen on phosphorus to form a [2+2] cycloaddition product (oxaphosphetane) which decomposes to form the alkene and triphenylphosphine oxide.
Given :
a.
b.
c.
d.
.
To Find :
Find the most likely vale of x for each one .
Solution :
a .
Because boron have valency of 3 .
So , x = 3 .
b . 
Valency of carbon is 4 .
x = 4 .
c . 
Valency of nitrogen is 3 .
Therefore , x = 3 .
d . 
Now ,we know valency of carbon is 4 and hydrogen is 1 .
Also , two hydrogen are already there .
So , only 2 electrons left to share .
Since , chlorine have valency of 1 .
Therefore , only 2 electrons of chlorine can connect .
x = 2 .
Hence , this is the required solution .
Answer:
[NH₃] → 3.24 M
Explanation:
Our solute: Ammonia
Our solvent: Water
Solution's mass = Mass of solute + Mass of solvent
Solution's mass = 15 g + 250 g = 265g
We use density to determine, the volume.
D = mass /volume → Volume = m / D → 265 g /0.974 g/mL = 272.07 mL.
We convert the mL to L → 272.07 mL . 1L /1000mL = 0.27207 L
To determine molarity we need the moles of solute in 1 L of solution.
Moles of solute are: 15g / 17g/mol = 0.882 moles
[NH₃] = 0.882mol /0.27207 L → 3.24 M
The last electron on the outer most shell. or d oder of dere atomic no
Since protons are postive and neutrons are neutral. Then it is postive.