Answer:

Explanation:
We can calculate the acceleration experimented by the passenger using the formula
, taking the initial direction of movement as the positive direction and considering it comes to a rest:

Then we use Newton's 2nd Law to calculate the force the passenger of mass m experimented to have this acceleration:

Which for our values is:

It's b, because the more force an object it is given the harder it will be for it to slow down.
Answer:
E
= -4556.18 N/m
Explanation:
Given data
u = 3.6×10^6 m/sec
angle = 34°
distance x = 1.5 cm = 1.5×10^-2 m (This data has been assumed not given in
Question)
from the projectile motion the horizontal distance traveled by electron is
x = u×cosA×t
⇒t = x/(u×cos A)
We also know that force in an electric field is given as
F = qE
q= charge , E= strength of electric field
By newton 2nd law of motion
ma = qE
⇒a = qE/m
Also, y = u×sinA×t - 0.5×a×t^2
⇒y = u×sinA×t - 0.5×(qE/m)×t^2
if y = 0 then
⇒t = 2mu×sinA/(qE) = x/(u×cosA)
Also, E = 2mu^2×sinA×cosA/(x×q)
Now plugging the values we get
E = 2×9.1×10^{-31}×3.6^2×10^{12}×(sin34°)×(cos34°)/(1.5×10^{-2}×(-1.6)×10^{-19})
E
= -4556.18 N/m
<h2>
Answer:Third</h2>
Explanation:
Newton's third law states that every action force has a equal and opposite reaction force.
Example 1:
Consider yourself hitting a wall with your hand,you are exerting a force on the wall but still you feel hurt because the wall exerts same force on your hand in opposite reaction.
Example 2:
Consider yourself standing on ground.You are exerting force on ground.But how are you able to stand on ground even if your mass is forcing you to go down?The answer is normal reaction force.The ground exerts a force on your feet which makes you to stand still.