Answer:
The amplitude of the oscillation is 2.82 cm
Explanation:
Given;
mass of attached block, m = 4.1 kg
energy of the stretched spring, E = 3.8 J
period of oscillation, T = 0.13 s
First, determine the spring constant, k;

where;
T is the period oscillation
m is mass of the spring
k is the spring constant

Now, determine the amplitude of oscillation, A;

where;
E is the energy of the spring
k is the spring constant
A is the amplitude of the oscillation

Therefore, the amplitude of the oscillation is 2.82 cm
Answer:
50
Explanation:
Use the Pythagorean theorem to find the length of the diagonal, or the hypotenuse of an imaginary triangle. 30^2 + 40^2 = 2500, which is 50^2. So, the magnitude is 50.
Brainliest, please :)
Answer:
Average speed = distance/time
From 1 to 9 seconds:
Distance covered = 1 - 0.2 = 0.8 km
Time = 9 - 1 = 8 sec
Average speed = 0.8 km / 8 sec
Average speed = 0.1 km/s .
The average speed for the whole test is 1.6 km / 20 sec = 0.08 km/sec. A graph of speed vs time would average out as a horizontal line at 0.08 km/sec from 1 sec to 21 sec. The area under it would be (0.08 km/s) x (20 sec) = 1.6 km.
Surprise surprise ! The area under a speed/time graph is the distance covered during that time !
In closing, I want to express my gratitude for the gracious bounty of 3 points with which I have been showered. Moreover, the green breadcrust and tepid cloudy water have also been refreshing.
Explanation:
The net charge on an atom is equal to the overall difference between the number of protons in the nucleus versus the number of electrons around the nucleus, where a negative sign represents less protons and a positive sign represents more protons (than electrons).
Answer:
220 ohms
Explanation:
I = V / R
0.25 = 110 / R
R = 110 / 0.25
R = 440 ohms
Equivalent resistance = 440 ohms
Resistance of single light bulb = Equivalent resistance / number of bulbs
= 440 / 2
= 220 ohms