Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m
Answer:
33.61°
Explanation:
Refractive index is equal to velocity of the light 'c' in empty space divided by the velocity 'v' in the substance.
Or ,
n = c/v.
v is the velocity in the medium (2.3 × 10⁸ m/s)
c is the speed of light in air = 3.0 × 10⁸ m/s
So,
n = 3.0 × 10⁸ / 2.3 × 10⁸
n = 1.31
Using Snell's law as:
Where,
is the angle of incidence ( 25.0° )
is the angle of refraction ( ? )
is the refractive index of the refraction medium (air, n=1)
is the refractive index of the incidence medium (glass, n=1.31)
Hence,
Angle of refraction =
= 33.61°
<span>Seismologists would be your answer. </span>