Answer:
A dependent variable is a variable that is tested in an experiment. An independent variable is that can be modified. Depending on what you are testing, the dependent variable will change accordingly to the dependent variable.
- I'm reading this back and it doesn't make much sense, if you want me to reword this I can
Answer:
The leaves of the electroscope move further apart.
Explanation:
This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.
Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.
So, the leaves move further apart.
Answer:
875 N
Explanation:
From this question, you didn't state the time taken for the bumper car to move or to hit the other bumper car. In calculations of force, time is often needed, because
Force = mass * acceleration, while
Acceleration = velocity / time, basically
Force = mass * velocity / time.
We have our mass, we have our velocity, but we haven't time. So, for this calculation, I'd assume our time to be 1s.
Going by the formula I stated, we can then say that
Force = 250 * 3.5 / 1
Force = 875 N
This means the force my bumper car have while moving at 3.5 m/s for an estimated time of 1s is 875 N