Zoroastrianism affected the way the Persians governed their subjects by allowing the territories under their rule to worship their own religion.
Answer:
It will be easier to break the meter rule with the long side against my knee.
Explanation:
To break the meter rule involves the principle of bending moment. The long side will require less force to generate the same amount of bending moment that will have to be generated to break the meter rule. The short side on the other hand will require more force to generate this mount of bending moment. This is because the shorter has a very small surface area, which concentrates the force on your knee. The pressure is then dissipated as more pressure to your knee. Th longer side has a lesser surface area so, most of the force is used in breaking the meter rule.
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then

Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)
Answer:

Now,buyantant force

so;




Now,



And now,



Hence that,specific density of a given body is 3
please mark me as brainliest, please