Answer:
4 m, 1.71 m and 6.29 m
Explanation:
Let L = 8 m be the distance between the two speakers. Let x be the distance from speaker A of constructive interference. The distance to speaker B from the point of constructive interference is thus x₁ = L - x.
There is constructive interference when the distance x₁ - x = nλ where n = is an integer and λ = wavelength L - x
x₁ - x = nλ
L - x - x = nλ
L - 2x = nλ
x = (L - nλ)/2 = (L - nv/f)/2. where v = speed of wave = 343 m/s and f = frequency = 75 Hz
The distance from A where constructive interference would occur starts from when
n = 0
x₂ = (L - nv/f)/2 = (8 - 0 × 343/75)/2 = (8 - 0)/2 = 8/2 = 4 m
n = 1
x₃ = (L - nv/f)/2 = (8 - 1 × 343/75)/2 = (8 - 4.57)/2 = 3.43/2 = 1.71 m
when n = 2
x₄ = (L - nv/f)/2 = (8 - 2 × 343/75)/2 = (8 - 9.14)/2 = -1.15/2 = -0.57 m
So the value at n = 2 is not included.
The third point occurs at x₅ = L - x₃ where x₃ = 1.71 m is the distance away from point B where constructive interference also occurs. (since it is symmetrical about the point x₂ = 4 m
x₅ = L - x₃ = 8 - 1.71 = 6.29 m
To develop the problem it is necessary to apply two concepts, the first is related to the calculation of average data and the second is the Boltzmann distribution.
Boltzmann distribution is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. It is given by

Where,
energy of that state
k = Boltzmann's constant
T = Temperature
With our values we have that
T= 250K




To make the calculations easier we can assume that the temperature and Boltzmann constant can be summarized as



Therefore the average energy would be,

Replacing with our values we have


Therefore the average internal energy is 
The loss or conservation of kinetic energy is the difference between an elastic and an inelastic collision. Kinetic energy is not preserved in an inelastic collision, and it will change forms into sound, heat, radiation, or another form. The kinetic energy in an elastic collision is preserved and does not change forms.
Answer:

Explanation:
electronic configuration of an atom is the spatial arrangement of the electrons around the nucleus in the energy orbits
We know that the atomic number of Titanium is 22
The electronic configuration of Titanium is

False. reaction time would be lapse of time between external stimuli and muscular movement