Answer:
0.650
Explanation:
Move the decimal point three times to the left.
Answer:
The weight of the block on the moon is 15 kg.
Explanation:
It is given that,
The acceleration of the block, a = 7.5 m/s²
Force applied to the box, F = 70 N
The mass of the block will be, 

m = 9.34 kg
The block and table are set up on the moon. The acceleration due to gravity at the surface of the moon is 1.62 m/s². The mass of the object remains the same. It weight W is given by :


W = 15.13 N
or
W = 15 N
So, the weight of the block on the moon is 15 kg. Hence, this is the required solution.
The number of electrons emitted from the metal per second increases if the intensity of the incident light is increased.
Answer: Option B
<u>Explanation:</u>
As a result of photoelectric effect, electrons are emitted by the light incident on a metal surface. The emitted electrons count and its kinetic energy can measure as the function of light intensity and frequency. Like physicists, at the 20th century beginning, it should be expected that the light wave's energy (its intensity) will be transformed into the kinetic energy of emitted electrons.
In addition, the electrons count emitting from metal must vary with light wave frequency. This frequency relationship was expected because the electric field oscillates due to the light wave and the metal electrons react to different frequencies. In other words, the number of electrons emitted was expected to be frequency dependent and their kinetic energy should be dependent on the intensity (constant wavelength) of light.
Thus, the maximum in kinetic energy of electrons emitted increases with increase in light's frequency and is experimentally independent of light intensity. So, the number of emitted electrons is proportionate to the intensity of the incident light.
The answer is 36 kilometers per hour, or 10 meters per second.
Answer: Energy from the core travels by radiation through the radiative
zone, then by convection through the convection zone.
Explanation: