Answer:
Explanation:
From the given information:
The equation for the reaction can be represented as:

The I.C.E table can be represented as:
2SO₂ O₂ 2SO₃
Initial: 14 2.6 0
Change: -2x -x +2x
Equilibrium: 14 - 2x 2.6 - x 2x
However, Since the amount of sulfur trioxide gas to be 1.6 mol.
SO₃ = 2x,
then x = 1.6/2
x = 0.8 mol
For 2SO₂; we have 14 - 2x
= 14 - 2(0.8)
= 14 - 1.6
= 12.4 mol
For O₂; we have 2.6 - x
= 2.6 - 1.6
= 1.0 mol
Thus;
[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,
[O₂] = 1/50 = 0.02 M ,
[SO₃] = 1.6/50 = 0.032 M
Kc = [SO₃]² / [SO₂]² [O₂]
= ( 0.032²) / ( 0.248² x 0.02)
= 0.8325
Recall that; the equilibrium constant for the reaction
= 0.8325;
If we want to find:

Then:


Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.
When the same species undergoes both oxidation and reduction in a single redox reaction, this is referred to as a disproportionation. Therefore, divide it into two equal reactions.
NO2→NO^−3
NO2→NO
and do the usual changes
First, balance the two half reactions:
3. NO2 +H2O →NO^−3 + 2 H^+ + e−
4. NO2 +2 H^+ + 2e− → NO + H2O
Now multiply one or both half-reactions to ensure that each has the same number of electrons. Here, Eqn (3) x 2 results in each half-reaction having two electrons:
5. 2 NO2 + 2 H2O → 2 NO^−3 + 4H^+ + 2e−
Now add Eqn 4 and 5 (the electrons now cancel each other):
3NO2 + 2H^+ + 2H2O → NO + 2 NO−3 + H2O + 4H+
and cancel terms that’s common to both sides:
3NO2 + H2O → NO + 2NO^−3 + 2H+
This is the net ionic equation describing the oxidation of NO2 to NO3 in basic solution.
Learn more about balancing equation here:
brainly.com/question/26227625
#SPJ4
Answer:
I think so henterogeneous
Answer:
The months became darker colored and more darker colored moths were sighted.
Explanation:
All of the new air pollution caused the moths to alter there wings and bodies. The moths had no adaptation to this air pollution, causing them to be discolored.