Answer: 123 g
Explanation: Q =It = nzF. For Ca^2+ z= 2, t = 5.5 x 3600 s and I = 30.0
And F= 96485 As/mol
Amount of moles is n = It /zF = 3.078 mol , multiply with atomic mass 40.08 g/mol
Metals :-
Group 1A - Alkali metals ( highly reactive metals)
Non-metals :-
Group 17 - Halogens ( highly reactive non-metals )
Answer:
The density of the ideal gas is directly proportional to its molar mass.
Explanation:
Density is a scalar quantity that is denoted by the symbol ρ (rho). It is defined as the ratio of the mass (m) of the given sample and the total volume (V) of the sample.
......equation (1)
According to the ideal gas law for ideal gas:
......equation (2)
Here, V is the volume of gas, P is the pressure of gas, T is the absolute temperature, R is Gas constant and n is the number of moles of gas
As we know,
The number of moles: 
where m is the given mass of gas and M is the molar mass of the gas
So equation (2) can be written as:

⇒ 
⇒
......equation (3)
Now from equation (1) and (3), we get
⇒ Density of an ideal gas:
⇒ <em>Density of an ideal gas: ρ ∝ molar mass of gas: M</em>
<u>Therefore, the density of the ideal gas is directly proportional to its molar mass. </u>
I would imagine they’d be equal.
F = ma
We can treat mass and force as constants because they do not change throughout both systems and they are the same on both systems. That would mean the acceleration would be the same for both systems.
An explanation of this could be the two forces are acting in different directions, so one is positively accelerating the object and the other is negatively accelerating it