Answer:
0.687 m/s
Explanation:
Initial energy = final energy
1/2 mu² = mgh + 1/2 mv²
1/2 u² = gh + 1/2 v²
Given u = 2.00 m/s, g = 9.8 m/s², and h = 0.180 m:
1/2 (2.00 m/s)² = (9.8 m/s²) (0.180 m) + 1/2 v²
v = 0.687 m/s
Answer:
The resistance is 0.124 ohm.
Explanation:
It is common for domestic electrical installations to use copper wire with a diameter of 2.05 mm. Determine the resistance of such a wire with a length of 24.0 m.
diameter, d = 2.05 mm
radius, r = 1.025 mm
Length, L = 24 m
resistivity of copper = 1.7 x 10^-8 ohm m
Let the resistance is R.

The velocity of the pitcher at the given mass is 0.1 m/s.
The given parameters:
- <em>Mass of the pitcher, m₁ = 50 kg</em>
- <em>Mass of the baseball, m₂ = 0.15 kg</em>
- <em>Velocity of the ball, u₂ = 35 m/s</em>
<em />
Let the velocity of the pitcher = u₁
Apply the principle of conservation of linear momentum to determine the velocity of the pitcher as shown below;
m₁u₁ = m₂u₂

Thus, the velocity of the pitcher at the given mass is 0.1 m/s.
Learn more about conservation of linear momentum here: brainly.com/question/13589460
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds).
Notice that the ball is only accelerating while it's in contact with the racket. The instant the ball loses contact with the racket, it stops accelerating, and sails off in a straight line at whatever speed it had when it left the strings.
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )
Answer:
4.7 x 10³ rad / s
Explanation:
During the time light goes and comes back , one slot is replaced by next slot while rotating before the light source
Time taken by light to travel a distance of 2 x 500 m is
= (2 x 500) / 3 x 10⁸
= 3.333 x 10⁻⁶ s .
In this time period, two consecutive slots come before the source of light one after another by rotation. There are 400 slots so time taken to make one rotation
= 3.333 x 10⁻⁶ x 400
= 13.33 x 10⁻⁴ s
This is the time period so
T = 13.33 X 10⁻⁴
Angular speed
= 2π / T
= 
4.7 x 10³ rad / s