Answer:
The answer is C "think about the problem first, systematically consider all factors, and form a hypothesis"
Explanation:
In physics there is some basic fomula that sir Isacc Newton proposed under the topic of motion. The three formulas are below;
<em>1) v=u+at</em>
<em>2)v^2=u^2+2as</em>
<em>3)s=ut+(1/2)(at^2)</em>
the variables are explained below;
u= initial velocity of the body
a=acceleration/Speed of the body
t= time taken by the body while travelling
s= displacement of the body.
Therefore to solve keatons problem, the factors(variables) in the formulas above need to be systematically considered. Since the ball was dropped from the top of the building, the initial velocity is 0 because the body was at rest. Also the acceleration will be acceleration due to gravity (9.8m/s^2)
Answer:
No..
Explanation:
As the bird releases the drop there is no internal force which will drive it into circular path but it will fall on tangent of the arc at the point of release because it has a tangential velocity same as bird. Path will be parabola in vertical plane.
As the person is on circular arc constantly moving it will never meet that drop.
Answer:
the final angular velocity of the platform with its load is 1.0356 rad/s
Explanation:
Given that;
mass of circular platform m = 97.1 kg
Initial angular velocity of platform ω₀ = 1.63 rad/s
mass of banana
= 8.97 kg
at distance r = 4/5 { radius of platform }
mass of monkey
= 22.1 kg
at edge = R
R = 1.73 m
now since there is No external Torque
Angular momentum will be conserved, so;
mR²/2 × ω₀ = [ mR²/2 +
(
R)² +
R² ]w
m/2 × ω₀ = [ m/2 +
(
)² +
]w
we substitute
w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1
w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )
w = 48.55 × [ 1.63 / ( 76.3908 ) ]
w = 48.55 × 0.02133
w = 1.0356 rad/s
Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s
Answer:
A=1
B=-2
Explanation:
Part A and B of the question wasn't given, however, I attached the relevant parts to solve this question as follows.
From part B as attached, it shows that the right option is C which is
2A+3B=-4
Substituting B with 3A-5 then we form the second equation as shown
2A+3(3A-5)=-4
By simplifying the above equation, we obtain
2A+9A-15=-4
Re-arranging, then
11A=-4+15
Finally
11A=11
A=1
To obtain B, we already know that 3A-5 so substituting the value of A into the above then we obtain
B=3(1)-5=-2
Therefore, required values are 1 and -2