Answer:
Explanation:
The speed is the distance traveled divided by the time taken. The distance traveled in 24hs while standing on the equator is the circumference of the Earth , where is the radius of the Earth.
We have then:
And then we use the centripetal acceleration formula:
Answer:
and is in photo given.I didn't get time to type.
Answer:
The value of the centripetal forces are same.
Explanation:
Given:
The masses of the cars are same. The radii of the banked paths are same. The weight of an object on the moon is about one sixth of its weight on earth.
The expression for centripetal force is given by,
where, is the mass of the object, is the velocity of the object and is the radius of the path.
The value of the centripetal force depends on the mass of the object, not on its weight.
As both on moon and earth the velocity of the cars and the radii of the paths are same, so the centripetal forces are the same.
The acceleration of gravity on or near the surface of the Earth is 9.8 m/s².
Anything acted on only by gravity loses 9.8 m/s of upward speed, or gains
9.8 m/s of downward speed, every second.
Leaping straight upward at 1.8 m/s, Tina keeps rising until she runs out of
upward speed. That happens in (1.8/9.8) = 0.1837 second after the leap.
After that, Finkel's First Law of Motion takes over:
"What goes up must come down."
The dropping part of the leap is symmetrical with the first. Please don't
make me go through proving it. Tina hits the floor at the same speed of
1.8 m/s with which she left it, and it takes the same amount of time to drop
from the peak to the floor as it took to rise from the floor to the peak.
So her total time out of contact with the floor is
2 x (0.1837 sec) = 0.367 second (rounded)