I don't know why the answer is D , because I can't see the list of choices.
The only way to get 8.0 Amps is by making a serious mistake.
The current in the second picture is 4.0 Amps.
If the resistors are identical, then the effective resistance of
two resistors in parallel is 1/2 the resistance of each one.
The resistance in the second picture is 1/2 the resistance
in the first picture.
Current = (voltage) / (resistance)
Cutting the resistance in half causes the current to double.
If the current was 2.0 Amps in the first picture, it's 4.0 Amps
in the second picture.
Answer:
in pounds if would be 50.7 or 50.7063
Answer:
The temperature of the mantle varies greatly, from 1000° Celsius near its boundary with the crust, to 3700° Celsius
hope this helps you!
Answer:
To establish this relationship we must examine the potentials that these forces create. The electrical potential is described by
Ve = k q / r
The potential for strong nuclear force is
Vn (r) = - gs / 4pir exp (-mrc / h)
Where gs is the stacking constant and r the distance between the nucleons,
We can compare these potentials where the force is derived from the relationship
E = -dU / dr
F = q E
Explanation:
Answer:
The time taken to reach the maximum height is 3.20 seconds
Explanation:
The given parameters are;
The initial height from which the volcano erupts the lava bomb = 64.4 m
The initial upward velocity of the lava bomb = 31.4 m/s
The acceleration due to gravity, g = 9.8 m/s²
The time it takes the lava bomb to reach its maximum height, t, is given by the following kinematic equation as follows;
v = u - g·t
Where;
v = The final velocity = 0 m/s at maximum height
u = The initial velocity = 31.4 m/s
g = The acceleration due to gravity = 9.8 m/s²
t = The time taken to reach the maximum height
Substituting the values gives;
0 = 31.4 - 9.8 × t
∴ 31.4 = 9.8 × t
t = 31.4/9.8 ≈ 3.204
The time taken to reach the maximum height rounded to three significant figures = t ≈ 3.20 seconds