Answer:
d = 27.7 m
Explanation:
Here the car is driving on the inclined plane
So here we can say that work done by the gravity and work done by friction is equal to change in kinetic energy of the system
So here we can write it as

now we have
m = 1700 kg






Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
Answer:
Change in velocity and direction over a specific period of time.
Explanation:
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate the acceleration of an object.
Mathematically, acceleration is given by the equation;


Where,
a is acceleration measured in 
v and u is final and initial velocity respectively, measured in 
t is time measured in seconds.
Hence, the types of changes in motion that cause acceleration is a change in velocity and direction over a specific period of time.
When its temperature increases, the reactants have more kinetic energy so the frequency of effective collision increases, resulting in a faster rate of chemical reaction.