On Jupiter, C. your weight would increase by a factor of 2.4 . Weight is a product of mass and gravity. Mass does not change dependent upon location.
Answer:
1. v = 6.67 m/s
2. d = 9.54 m
Explanation:
1. To find the horizontal velocity of the rock we need to use the following equation:
<u>Where</u>:
d: is the distance traveled by the rock
t: is the time
The time can be calculated as follows:
<u>Where:</u>
g: is gravity = 9.8 m/s²
Now, the horizontal velocity of the rock is:
Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.
2. To calculate the distance at which the projectile will land, first, we need to find the time:
So, the distance is:
Therefore, the projectile will land at 9.54 m of the second cliff.
I hope it helps you!
Weight = (mass) x (gravity)
On Earth ...
Weight = (1 kg) x (9.8 m/s^2)
Weight = 9.8 Newtons
D. 980, this is the best answer because 35 x 7 is 980 :)
On Earth, 1 g = 9.8 m/s² .
5 g = 5 · (9.8 m/s²)
5 g = 49 m/s²