Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
It <span>states that the force F needed to extend or compress a spring by some distance X is proportional to that distance.
For elastic materials, they extend more in same amount of force, (as they are directly proportional), due to it's elastic nature (presence of large deforming force)
Hope this helps!</span>
Answer:The Women's National Basketball Association,
Explanation:Branliest:)
Answer:
No, the farmer is not able to move the mule.
Explanation:
Mass =100 kg
Force=F=800 N
The coefficient between the mule and the ground=

Static friction force,f=
Normal force=N=mg
Static friction force,f=
Using 
F<f
Static friction force is greater than applied force.
Therefore , the farmer is not able to move the mule.