F=ma
a=F/m
a=2000/1000
a=2 m/s^2
Answer:
A., the variables have a direct relationship.
Explanation:
As K rises, L rises.
It's not B. because one isn't rising as the other is lowering.
It's not C. because undefined would be a vertical line.
- Initial velocity (u) = 0 m/s [the car was at rest]
- Distance (s) = 80 m
- Time (t) = 10 s
- Let the magnitude of acceleration be a.
- By using the equation of motion, we get,
<u>A</u><u>nswer:</u>
<u>The </u><u>magnitude</u><u> </u><u>of </u><u>its </u><u>acceleration</u><u> </u><u>is </u><u>1</u><u>.</u><u>6</u><u> </u><u>m/</u><u>s^</u><u>2</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
The phenomenon known as "tunneling" is one of the best-known predictions of quantum physics, because it so dramatically confounds our classical intuition for how objects ought to behave. If you create a narrow region of space that a particle would have to have a relatively high energy to enter, classical reasoning tells us that low-energy particles heading toward that region should reflect off the boundary with 100% probability. Instead, there is a tiny chance of finding those particles on the far side of the region, with no loss of energy. It's as if they simply evaded the "barrier" region by making a "tunnel" through it.
Explanation: