D = 40.5 g / 15.0 mL<span>d = 2.70 g/mL</span>
Infrared, visible light, then ultraviolet. Infrared is light that the human eye can not see and visible light is clearly light we can see then ultraviolet is has such a high frequency we can't see it either.
You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).
And you know that the potential energy, PE, is [ 1/2 ] k (x^2)
Then, use x = A, to calculate the PE in the point where ME = PE.
ME = PE = [1/2] k (A)^2.
At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2
=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME
So, if PE is 1/4 of ME, KE is 3/4 of ME.
And the answer is 3/4
Answer:
20.4m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Distance = 53m
Time = 5.2s
Unknown:
Acceleration = ?
Solution:
This is a linear motion and we use the right motion equation;
S = ut +
at²
S is the distance
u is the initial velocity
a is the acceleration
t is the time
Insert the parameters and solve;
53 = (0x 5.2) +
x a x 5.2
53 = 2.6a
a =
= 20.4m/s²