Answer:
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Explanation:
ppm (parts per million) concentration is defined as the mass (in milligrams) of a substance dissolved in one liter of solution.
In our case we have:
mass of MgBr₂ = 12.41 g
volume of water (which is equal to the final solution volume) = 2.55 L
Now we devise the following reasoning:
if 12.41 g of MgBr₂ are dissolved in 2.55 L of water
then X g of MgBr₂ are dissolved in 1 L of water
X = (1 × 12.41) / 2.55 = 4.867 g of MgBr₂
if in 184 g (1 mole) of MgBr₂ we have 160 g of Br⁻
then in 4.867 g of MgBr₂ we have Y g of Br⁻
Y = (4.867 × 160) / 184 = 4.232 g of bromide (Br⁻)
4.232 g of bromide (Br⁻) = 4234 mg of bromide (Br⁻)
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Answer:
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Explanation:
Answer: The coefficient in front of AgCl when the equation is properly balanced is 2.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
Decomposition of silver chloride is represented as:

Thus the coefficient in front of AgCl when the equation is properly balanced is 2.
Bottle 1 is a compound bottle 2 is element bottle 3 is a element bottle 4 is a element
As your question is vague, I am assuming that you are talking Alpha, Beta and Gamma radiation. Out of these three radiation, Gamma radiation is the smallest in size compared to Alpha or Beta, but it has the highest energy levels. Gamma radiation is also known as photons. In other words, photons are light particles.