Answer : The pH will be, 3.2
Explanation :
As we known that the value of solubility constant of ferric hydroxide at
is, 
Amount or solubility of iron consumed = (1.800 - 0.3) mg/L = 1.5 mg/L
The given solubility of iron convert from mg/L to mol/L.

The chemical reaction will be:

The expression of solubility constant will be:
![K_{sp}=[Fe^{3+}]\times [3OH^-]^3](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BFe%5E%7B3%2B%7D%5D%5Ctimes%20%5B3OH%5E-%5D%5E3)
Now put all the given values in this expression, we get the concentration of hydroxide ion.
![2.79\times 10^{-39}=(2.7\times 10^{-7})\times [3OH^-]^3](https://tex.z-dn.net/?f=2.79%5Ctimes%2010%5E%7B-39%7D%3D%282.7%5Ctimes%2010%5E%7B-7%7D%29%5Ctimes%20%5B3OH%5E-%5D%5E3)
![[OH^-]=1.5\times 10^{-11}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.5%5Ctimes%2010%5E%7B-11%7DM)
Now we have to calculate the pOH.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)


Now we have to calculate the pH.

Therefore, the pH will be, 3.2
C7H16, where C=12.01, and H=1.01, so the weight of the molecule would be 7(12.01)+16(1.01), or 100.23. The percentage of carbon would be found by ((7*12.01)/100.23)*100=83.88% Carbon
((16*1.01)/100.23)*100=16.12% Hydrogen
The original concentration of the acid solution is 6.175
10^-4 mol / L.
<u>Explanation:</u>
Concentration is the ratio of solute in a solution to either solvent or total solution. It is expressed in terms of mass per unit volume
HBr + NaOH -----> NaBr + H2O
There is a 1:1 equivalence with acid and base.
Moles of NaOH = 72.90
10^-3
0.25
= 0.0182 mol.
[ HBr ] = moles of base / volume of a solution
= 0.0182 / 29.47
= 6.175
10^-4 mol / L.