Answer:
(b) IE₂ of Ga > IE₂ of Ge
Explanation:
Electronic configuration of Ga is [Ar] 3d¹⁰4s²4p¹
Electronic configuration of Ge is [Ar] 3d¹⁰4s²4p²
After 1st ionisation , Ga becomes [Ar] 3d¹⁰4s² and becomes stable . Its
2 nd ionisation requires higher amount of ionisation energy. In case of Ge , there are 2 electrons in outermost orbital so it becomes stable after ionisation of 2 electrons.
Answer:
All of the above are true
Explanation:
a) The emission spectrum of a particular element is always the same and can be used to identify the element: It's true since the emission spectrum for each element is unique. It has the same bright lines at the same wavelength. This feature is used to identify elements. For example, the study of the emission spectra of light arriving from stars allow us to identify the elements presents in the star because the light contains the emission spectra of those elements.
b)The uncertainty principle states that we can never know both the exact location and speed of an electron: It is true since the velocity of an electron is related to its wave nature, while its position is related to its particle nature and we cannot simultaneously measure electron's position and velocity with precision.
c) An orbital is the volume in which we are most likely to find an electron: An orbital is a probability distribution map that is used to decribe the likely position of an electron in an atom.
The answer to your question is C.)
Answer: m = 11.2 g C7H16
Explanation: First convert the mass of CO2 to moles. Then do the mole ratio between CO2 and C7H16 which is 7:1. Finally convert the moles of C7H16 to the mass of C7H16.
Solution attached.
Is there answer choices ?