Answer:
120°
Explanation:
Given forces with magnitude F and F
Applying the parallelogram law of vector
Where resultant is given as :
R = √(A^2 + B^2 + 2ABCos Ф
WHERE A and B are two forces with angle Ф
F =√(F^2 + F^2 + 2F * F Cos Ф
Square both sides
F^2 = F^2 + F^2 + 2F^2 CosФ
F^2 - 2F^2 = 2F^2 CosФ
- F^2 = 2F^2 Cos Ф
Divide both sides by 2F^2
- 1 / 2 = CosФ
Cosine(theta) = - 1/2
Ф = cosi^-1 (-1/2)
Ф = 120°
Answer:
See the explanation below
Explanation:
The speed of sound waves can be calculated using the following equation:
![v_{s}=\sqrt{\frac{E}{ro} } \\where:\\E = Young's modulus [GPa]\\ro = density of the material [kg/m^3]](https://tex.z-dn.net/?f=v_%7Bs%7D%3D%5Csqrt%7B%5Cfrac%7BE%7D%7Bro%7D%20%7D%20%5C%5Cwhere%3A%5C%5CE%20%3D%20Young%27s%20modulus%20%5BGPa%5D%5C%5Cro%20%3D%20density%20of%20the%20material%20%5Bkg%2Fm%5E3%5D)
Let's do the exercise of comparing two materials one denser than the other, as is steel and aluminum
ro_steel = 7500 [kg/m^3]
ro_aluminum = 2700 [kg/m^3]
E_steel = 200 [GPa]
E_aluminum = 70 [GPa]
Now replacing the values in the equation for each material.
![v_{steel}=\sqrt{\frac{200*10^9}{7500}}\\ v_{steel}=5163[m/s]](https://tex.z-dn.net/?f=v_%7Bsteel%7D%3D%5Csqrt%7B%5Cfrac%7B200%2A10%5E9%7D%7B7500%7D%7D%5C%5C%20v_%7Bsteel%7D%3D5163%5Bm%2Fs%5D)
And for the aluminum
![v_{aluminum}=\sqrt{\frac{70*10^9}{2700} }\\ v_{aluminum}=5091.75[m/s]](https://tex.z-dn.net/?f=v_%7Baluminum%7D%3D%5Csqrt%7B%5Cfrac%7B70%2A10%5E9%7D%7B2700%7D%20%7D%5C%5C%20v_%7Baluminum%7D%3D5091.75%5Bm%2Fs%5D)
In this way we can see that sound propagates faster in denser materials.
Water<span> can </span>dissolve salt<span> because the positive part of </span>water<span> molecules attracts the negative chloride ions and the negative part of </span>water<span> molecules attracts the positive sodium ions. The amount of a substance that can </span>dissolve<span> in a liquid (at a particular temperature) is called the solubility of the substance. So the solute is the salt and the solvent is the water. I believe that is correct.</span>
ANOTHER RUNNING DOG
Explanation:
In the given question it is to find a suitable reference point to describe the motion of dog. Here I could suggest that it is better to compare the dog with another running dog to create the relative speed difference to get a reliable motion variation.
Because the motion of dog is in the linear with respect to the another dog and to the acceleration produced by the dog in the required interval is easy to calculate with respect to another dog which is already in motion.
Hence, I suggest that Motion of dog can be analysed better by analyse the motion variation of dog with another dog running.
Answer:
8 km an hour (about 5mph)
Explanation:
It depends on what you are looking for because there is no unit specified, but if you want kilometers an hour then all you have to do is multiply both sides by 2.
30 x 2 = 60 (minutes)
4 x 2 = 8 (kilometers)
Hope this helped at least a little bit!