Answer:
The atomic structure of an atom involves 3 subatomic particles: the proton, neutron, and electron. The proton has a positive charge and is found in the core of the atom, with the neutral neutrons that also have a mass of 1 amu (atomic mass unit) just like the proton. The nucleus is the core of the atom and contains protons and neutrons and is practically the only area with mass. The electron cloud is basically an area surrounding the nucleus and it contains negative charged electrons. Electrons have no mass but are charged with a negative charge that keeps them. I really hope this helps :)
Explanation:
There is a helpful video that actually explains the structure of an atom in a rather fun way in just 2 minutes. It really does help big time and it's kinda funny if you look it up on YT and watch:
WKRP: Venus Explains the Atom
Have a wonderful great day :)
Answer:
No.of moles of C is , n = mass/molar mass = 75.46 g / 12 (g/mol) = 6.3 moles No.of moles of H is , n' = mass/molar mass = 4.43 g / 1.0(g/mol) = 4.43 moles No.of moles of O is , n'' = mass/molar mass = 20.10 g / 16(g/mol) =1.25 moles Ratio to the no.of moles of C,H& O is 6.3 : 4.43 : 1.25 In the simple integer ratio is ( 6.3/1.25) : ( 4.43/1.25) : (1.25/1.25) 5.04 :3.5 : 1
Explanation:
Answer:
0.087 moles of water
Explanation:
Given data:
Number of molecules of water = 5.24×10²² molecules
Number of moles of water = ?
Solution:
The given problem will solve by using Avogadro number.
1 mole = 6.022 × 10²³ molecules of water
5.24×10²² molecules × 1 mol / 6.022 × 10²³ molecules
0.87×10⁻¹ mol
0.087 mol
Avogadro number:
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
With standard pressure there is a set list of values. (at STP), most common is 760torr. So whenever you see "at STP" or "at standard temperature pressure" you will use 760torr for pressure. Same thing goes with temperature, if you're not given temp and it says at STP you will use 273K.
For this problem:
You will be using the combined gas law:
(Pressure 1) x (Volume 1) / (Temp. 1) = (Pressure 2) x (Volume 2) / (Temp. 2)
(760torr) x (5.63L) / (287K) = (?) (9.21L) / (287K)
Pressure 2 = 465torr
*Hope this clarifies STP for you! :)
The correct answer is light...