Answer: 11.0 g of calcium will react with 10.0 grams of water.
Explanation:
To calculate the moles, we use the equation:
moles of
The balanced chemical equation is:
According to stoichiometry :
2 moles of
require = 1 mole of
Thus 0.55 moles of
require=
of
Mass of
Thus 11.0 g of calcium will react with 10.0 grams of water.
Answer: The concentration of hydrogen ions for this solution is
.
Explanation:
Given: pOH = 11.30
The relation between pH and pOH is as follows.
pH + pOH = 14
pH + 11.30 = 14
pH = 14 - 11.30
= 2.7
Also, pH is the negative logarithm of concentration of hydrogen ions.
![pH = - log [H^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5BH%5E%7B%2B%7D%5D)
Substitute the values into above formula as follows.
![pH = -log [H^{+}]\\2.7 = -log [H^{+}]\\conc. of H^{+} = 1.99 \times 10^{-3}](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C2.7%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5Cconc.%20of%20H%5E%7B%2B%7D%20%3D%201.99%20%5Ctimes%2010%5E%7B-3%7D)
Thus, we can conclude that the concentration of hydrogen ions for this solution is
.
Answer:

Explanation:
Hello,
In this case, the described chemical reaction is:

Thus, for the given reacting masses, we must identify the limiting reactant for us to determine the maximum mass of water that could be produced, therefore, we proceed to compute the available moles of ethane:

Next, we compute the moles of ethane consumed by 13.0 grams of oxygen by using the 1:7/2 molar ratio between them:

Thus, we notice there are less available moles of ethane, for that reason, it is the limiting reactant, thereby, the maximum amount of water is computed by considering the 1:3 molar ratio between ethane and water:

Best regards.
I need a little more context but I believe you are correct