B long board because of the length
Answer:
The electrostatic force is the force that exists between electrically charged particles or objects at rest.
Answer:
Acceleration, a = 750m/s²
Explanation:
Given the following data;
Radius, r = 0.31m
Velocity, v = 15m/s
To find the centripetal acceleration;

Substituting into the equation, we have;
Acceleration, a = 750m/s²
Therefore, the centripetal acceleration of the bike wheel is 750m/s².
Answer:
x = 2,864 m
, Ra = 32.1 m
Explanation:
Let's solve this problem in parts, let's start by finding the intensity of the sound in each observer
observer A β = 64 db
β = 10 log Iₐ / I₀
where I₀ = 1 10⁻¹² W / m²
Iₐ = I₀ 10 (β/ 10)
let's calculate
Iₐ = 1 10⁻¹² (64/10)
Iₐ = 2.51 10⁻⁶ W / m²
Observer B β = 85 db
I_b = 1 10-12 10 (85/10)
I_b = 3.16 10⁻⁴ W / m²
now we use that the emitted power that is constant is the intensity over the area of the sphere where the sound is distributed
P = I A
therefore for the two observers
P = Ia Aa = Ib Ab
the area of a sphere is
A = 4π R²
we substitute
Ia 4pi Ra2 = Ib 4pi Rb2
Ia Ra2 = Ib Rb2
Let us call the distance from the observer be to the haughty R = ax, so the distance from the observer A to the haughty is R = 35 ax; we substitute
Ia (35 -x) 2 = Ib x2
we develop and solve
35-x = Ra (Ib / Ia) x
35 = [Ra (Ib / Ia) +1] x
x (11.22 +1) = 35
x = 35 / 12.22
x = 2,864 m
This is the distance of observer B
The distance from observer A
Ra = 35 - x
Ra = 35 - 2,864
Ra = 32.1 m
Answer:
-20.0 m/s and 30.0 m/s
Explanation:
Momentum is conserved:
m (30.0) + m (-20.0) = m v₁ + m v₂
30.0 − 20.0 = v₁ + v₂
10.0 = v₁ + v₂
Since the collision is perfectly elastic, energy is also conserved. Since there's no rotational energy or work done by friction, the initial kinetic energy equals the final kinetic energy.
½ m (30.0)² + ½ m (-20.0)² = ½ mv₁² + ½ mv₂²
(30.0)² + (-20.0)² = v₁² + v₂²
1300 = v₁² + v₂²
We now have two equations and two variables. Solve the system of equations using substitution:
1300 = v₁² + (10 − v₁)²
1300 = v₁² + 100 − 20v₁ + v₁²
0 = 2v₁² − 20v₁ − 1200
0 = v₁² − 10v₁ − 600
0 = (v₁ + 20) (v₁ − 30)
v₁ = -20, 30
If v₁ = -20, v₂ = 30.
If v₁ = 30, v₂ = -20.
So either way, the final velocities are -20.0 m/s and 30.0 m/s.