Answer:
it must be helical motion in which the charge particle will move uniformly along z axis and simultaneously it will move in circular path in xy plane.
Explanation:
Magnetic field is along z axis while velocity is in x-z plane
so we will have

so here we can say

so we will have

so here the net force on the charge is perpendicular to its x directional velocity along - Y direction
So due to this component of motion it will move along a circle while other component of the motion will remain uniform always
So here it is combination of two parts
1) Uniform circular motion
2) Uniform motion
So we can say that it must be helical motion in which the charge particle will move uniformly along z axis and simultaneously it will move in circular path in xy plane.
Sadly, no. The statement kind of has some appropriate words in it, but it's badly corrupted. Objects don't fall to Earth at a rate of 9.8 m/s, and the force that accelerates them downward is not a centripetal one.
Answer:
2.3 newtons of force
Explanation:
Divide the weight by the speed of the bike
Answer:
T= 8.061N*m
Explanation:
The first thing to do is assume that the force is tangential to the square, so the torque is calculated as:
T = Fr
where F is the force, r the radius.
if we need the maximum torque we need the maximum radius, it means tha the radius is going to be the edge of the square.
Then, r is the distance between the edge and the center, so using the pythagorean theorem, r i equal to:
r = 
r = 0.5374m
Finally, replacing the value of r and F, we get that the maximun torque is:
T = 15N(0.5374m)
T= 8.061N*m
Answer:

Explanation:
F = Magnetic force = 4.11 N
= Net current
= Current in one of the wires = 7.68 A
B = Magnetic field = 0.59 T
= Angle between current and magnetic field = 
= Length of wires = 2.64 m
= Current in the other wire
Magnetic force is given by

Net current is given by

The current I is
.