Answer:
13.33m/s
Explanation:
Given data
m1= 2000kg
u1= 20m/s
m2= 1500kg
u2= 0m/s
v1= 10m/s
Required
The speed of the sticks
We know that from the expression for the conservation of momentum
m1u1+m2u2= m1v1+m2v2
2000*20+1500*0=2000*10+1500*v2
40000=20000+1500v2
collect like terms
40000-20000= 1500v2
20000= 1500v2
v2= 20000/1500
v2= 13.33 m/s
Hence the velocity of the sticks is 13.33m/s
We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
Answer:
1/2 M V^2 = .1 M g H where 10% of PE goes into KE
V^2 = .2 g H = .2 * 9.8 * (2100 - 1600) = 980 m^2 / s^2
V = 31.1 m/s increase in speed during descent
1 km / hr = 1000 m / 3600 sec = .278 m/s
V = 31.1 m/s / (.278 m/s / km /hr)= 112 km/hr
Answer:

Explanation:
M = Mass of planets
R = Radius of circle
v = Velocity
= Angle
The circle is inside the triangle

The centripetal acceleration

The speed of the stars is 
Answer:
a) λ = 2 m
, c) f = 50 Hz
Explanation:
When a string is fixed at the ends the wave is reflected at each end, giving rise to a standing wave.
Since we extract them are fixed we have nodes at these points, the wavelength in the string is
fundamental λ = 2L
2nd harmonic λ= 2L / 2
3 harmonica λ= 2L / 3
a and b) from aui we can find the wavelength
λ = 2 3/3
λ = 2 m
c) the speed of the wave is related to the frequency and wavelength
v = λ f
f = v / λ
f = 100/2
f = 50 Hz
d) the acceleration can be found with the equations
a = d²y / dt²
the standing wave equation is
y = 2A sin kx cos wt
a = -2A w² sin kx cos wt
the acceleration is maximum when the cosine is ±1
A = 2A w² sin kx
the oscillatory part indicates that the wave moves, if we make this maximum vine, they relate it to
a = 2A w²
w = 2πf
A = 0.2 cm = 0.002 m
a = 2 0.002 (2π 50)²
a = 98.7 m / s