The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.
Mathematically, the frequency of the vibration of a string can be expressed as

Where,
L = Vibrating length string
T = Tension in the string
Linear mass density
At the same time we have the expression for the number of beats described as

Where
= First frequency
= Second frequency
From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well


Replacing
for n and 202Hz for 



The frequency of the tightened is 205Hz
Answer:
Constant speed: yes
Constant velocity: no
Explanation:
Let's remind the definition of speed and velocity:
- Speed is a scalar quantity, which is equal to the ratio between the distance covered (regardless of the direction) and the time taken:

- Velocity is a vector quantity, so it has both a magnitude and a direction. The magnitude is equal to the rate between the displacement of the object and the time taken, while the direction is the same as the displacement.
In this problem, we notice that:
- The speed of the car remains constant, as it is 90 km/h
- However, its direction of motion changes while the car travels round the corner: this means that the direction of the velocity is also changing, therefore velocity is not constant.
<span>vf^2 = vi^2 + 2*a*d
---
vf = velocity final
vi = velocity initial
a = acceleration
d = distance
---
since the airplane is decelerating to zero, vf = 0
---
0 = 55*55 + 2*(-2.5)*d
d = (-55*55)/(2*(-2.5))
d = 605 meters
</span>
Answer:
The heat causes the molecules on rubbing surfaces to move faster and have more energy.
Answer:
energy is conserved
a force sets an object in motion. when the force is multiplied by the time of its application we call the quantity impulse which changes the momentum of that object. what do we call the quantity force x (times) distance, and what quantity can this change?