Answer:
d = 10.076 m
Explanation:
We need to obtain the velocity of the ball in the y direction
Vy = 24.5m/s * sin(35) = 14.053 m/s
To obtain the distance, we use the formula
vf^2 = v0^2 -2*g*d
but vf = 0
d = -vo^2/2g
d = (14.053)^2/2*(9.8) = 10.076 m
Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>
The two systems that work together to deliver oxygen are D, respiratory and cardiovascular
25? this question makes no sense lol
Answer:
1.6 m/s2
Explanation:
Let
be the gravitational acceleration of the moon. We know that due to the law of energy conservation, kinetic energy (and speed) of the rock when being thrown upwards from the surface and when it returns to the surface is the same. Given that
stays constant, we can conclude that the time it takes to reach its highest point, aka 0 velocity, is the same as the time it takes to fall down from that point to the surface, which is half of the total time, or 4 / 2 = 2 seconds.
So essentially it takes 2s to decelerate from 3.2 m/s to 0. We can use this information to calculate 

So the gravitational acceleration on the Moon is 1.6 m/s2