To solve this problem it is necessary to apply the concepts related to optical magnification (is the process of enlarging the apparent size, not physical size, of something.). Specifically the angular magnification of an optical telescope is given by

Where,
Focal length of the objective lens in a refractor
Focal length of the eyepiece
Our values are given as
71cm
2.1cm
Replacing we have



Therefore the magnification of this astronomical telescope is -33.81
Answer:
The moment of inertia of the system decreases and the angular speed increases.
Explanation:
This very concept might not seem to be interesting at first, but in combination with the law of the conservation of angular momentum, it can be used to describe many fascinating physical phenomena and predict motion in a wide range of situations.
In other words, the moment of inertia for an object describes its resistance to angular acceleration, accounting for the distribution of mass around its axis of rotation.
Therefore, in the course of this action, it is said that the moment of inertia of the system decreases and the angular speed increases.
When a liquid is cooled, the kinetic energy of the particles, DECREASES..
Answer:
2N
Explanation:
subtract rthe two forces to see which is greater
4-2=2