Hey <span>wademcelroy2005, thanks for submitting your question to Brainly!
The answer to your question is </span><span>B:Radiation moves from a warmer object to a cooler object</span>
Answer:
A beaker
Step-by-step explanation:
Specifically, I would use a 250 mL graduated beaker.
A beaker is appropriate to measure 100 mL of stock solution, because it's easy to pour into itscwide mouth from a large stock bottle.
You don't need precisely 100 mL solution.
If the beaker is graduated, you can easily measure 100 mL of the stock solution.
Even if it isn't graduated, 100 mL is just under half the volume of the beaker, and that should be good enough for your purposes (you will be using more precise measuring tools during the experiment).
Answer:
146 g
Explanation:
Step 1. Calculate the <em>molar mass</em> of NaNO₃
Na = 22.99
N = 14.01
3O = 3 × 16.00 = 48.00
Total = 85.00 g/mol
Step 2. Calculate the <em>mass</em> of NaNO₃
Mass of NaNO₃ = 1.72 × 85.00/1
Mass of NaNO₃ = 146 g
Answer:

Explanation:
<u>1. Convert Grams to Moles</u>
Use the molar mass (found on the Periodic Table) to convert from grams to moles.
Use this value as a ratio.

Multiply by the given number of grams.

Flip the ratio so the grams of boron cancel out.



<u>2. Convert Moles to Atoms</u>
We use Avogadro's Number, 6.02*10²³: the number of particles (atoms, molecules, etc.) in 1 mole of a substance. In this case, the particles are atoms of boron.

Multiply by the number of moles we calculated.

The moles of boron cancel.


The original value of grams has 4 significant figures, so our answer should have the same. For the number we calculated, that is the thousandth place.

The 6 tells us to round the 2 to a 3.

25.00 grams of boron is equal to 1.393*10²⁴ atoms.