Answer:
Option 4 with o-h in the most polar bond, since the two atoms in the bond have the greatest difference in electronegativity. This is assuming there are no other factors in other atoms bound to either of the elements in the bond.
Explanation:
Answer:
40.3 for the unit that represents the minimum amount of magnesium oxide I beilieve.
Explanation:
Magnesium atoms are heavier than oxygen atoms, so we expect more than 50% of magnesium in the weight composition. Taking just one atom of Mg and one atom of O you will get a mass of 16.0 + 24.3 = 40.3.
Hope this helps! Please tell me if you have any questions :))
Answer:
You are the Cobalt
Explanation:
The least massive metalloid in the fourth period is Germanium, and it have 32 protons. If you have 5 less protons: 32 - 5 = 27 protons. The element with 27 protons is Cobalt
Answer:
what is your question tell may i can help you
Answer:
the change in energy of the gas mixture during the reaction is 227Kj
Explanation:
THIS IS THE COMPLETE QUESTION BELOW
Measurements show that the enthalpy of a mixture of gaseous reactants increases by 319kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that -92kJ of work is done on the mixture during the reaction. Calculate the change of energy of the gas mixture during the reaction in kJ.
From thermodynamics
ΔE= q + w
Where w= workdone on the system or by the system
q= heat added or remove
ΔE= change in the internal energy
q=+ 319kJ ( absorbed heat is + ve
w= -92kJ
If we substitute the given values,
ΔE= 319 + (-92)= 227 Kj
With the increase in enthalpy and there is absorbed heat, hence the reaction is an endothermic reaction.