Answer:
decreases, increases, minimum (zero)
Explanation:
Kinetic energy of a body is directly proportional to the square of velocity of the body and the potential energy is directly proportional to the height of the body at which it is placed.
The formula for the kinetic energy is
K = 1/2 m v^2
The formula for the potential energy is
U = m g h
As the body goes up its kinetic energy decreases as the velocity of the object decreases.
As the body goes up the potential energy increases as the height increases.
At the top most point, the velocity of teh object is zero, so the kinetic energy at the top is zero.
1 litre = 1000 Milliliters is the answer
1 m^3 = 1000 litres
The grandfather clock will now run slow (Option A).
<h3>What is Time Period of an oscillation?</h3>
- The time period of an oscillation refers to the time taken by an object to complete one oscillation.
- It is the inverse of frequency of oscillation; denoted by "T".
Now,
, where L is the length and g is the gravitational constant, is the formula for a pendulum's period. - The period will increase as one climbs a very tall mountain because g will slightly decrease.
- Due to this and the previous issue, the clock runs slowly and it seems that one second is longer than it actually is.
Hence, the grandfather clock will now run slow (Option A).
To learn more about the time period of an oscillation, refer to the link: brainly.com/question/26449711
#SPJ4
Answer:

Explanation:
We know that impedance of a RLC circuit is given by 
So
here R is resistance
is inductive reactance and
is capacitive reactance
To minimize the impedance
should be zero we know that 
So 


We know that 
So 

Where f is resonance frequency
The appropriate response is false. Cathode-beam ray does not deliver pictures on the guideline of instigated emf. The cathode-ray is a high-vacuum tube in which cathode beams deliver an iridescent picture on a fluorescent screen, utilized mostly in TVs and workstations.