1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
3 years ago
5

1.A Radio station broadcasts modern song on medium wave 350 Hz every day at ten o’clock in the morning. The velocity of radio wa

ve is 3X108 ms-1. The wavelength of another wave created in water is one percent of the radio wave and the velocity of sound in water is 1450 ms-1.
How many times of the frequency of the radio wave that of the wave created in the water? Analyze mathematically.
Physics
1 answer:
love history [14]3 years ago
8 0

Answer:

ans \:  = \boxed{{4.8 \times 10}^{ - 4}  Hz}

Explanation:

given \to \\  f_{r} = 350 \:  \\ v_{r} =  {3 \times 10}^{8}  \\ but \to \\ v = f \gamma   \to \:  \gamma  =  \frac{v}{f}  : hence \to \\  \gamma _{r} =  \frac{v_{r}}{f_{r}}   =  \frac{3 \times 10^{8} }{350}   =  \boxed{857,142.85714 \: m}\\ therefore \to \\ given \to \\  f_{w} = water \: frequency = \:  \boxed{  ?}\:  \\ v_{w} =  14 50 \\ but \to \\ v = f \gamma   \to \:  \gamma  =  \frac{v}{f}  : hence \to \\  \gamma _{w} =  \frac{v_{w}}{f_{w}}   =  \frac{1}{100}  \times \gamma _{r}  =  \frac{1}{100}  \times 857,142.85714  \\\gamma _{w}  =  \boxed{8,571.4285714 \: m} : hence \to \:  \\ f_{w} =  \frac{v_{w}}{ \gamma _{w}}  =  \frac{1450}{8,571.4285714}  =  \boxed{0.1691666667} \\ if \: the \: number \: of \: times = \boxed{ x} \\ f_{r} (x)=f_{w} \\ (x) =  \frac{f_{w}}{f_{r}}  =  \frac{0.1691666667}{350}  = 0.0004833333 \\ hence \to \\ the  \: frequency  \: of \:  the \:  radio  \: wave  \: is \to \:   \boxed{{4.8 \times 10}^{ - 4}  }\:  \\ that  \: of  \: the \:  wave  \: created  \: in  \: the  \: water.

♨Rage♨

You might be interested in
How hot can the desert get​
Art [367]

Answer:

134 f

Explanation:

The hottest temperature ever reliably measured in a desert was 134 degrees F, in Death Valley of the Mojave Desert in 1913.

8 0
3 years ago
Read 2 more answers
What is the purpose of a kink in a thermometer?
AnnZ [28]

Answer:

A 'kink' in the glass tube which breaks the mercury as it contracts, storing the highest temperature reading. The glass tube is shaped like a lens to magnify the thin mercury thread. Shaking the thermometer resets the mercury back into the bulb.

3 0
2 years ago
Read 2 more answers
Determine the stopping distances for a car with an initial speed of 88 km/h and human reaction time of 2.0 s for the following a
seropon [69]

Explanation:

Given that,

Initial speed of the car, u = 88 km/h = 24.44 m/s

Reaction time, t = 2 s

Distance covered during this time, d=24.44\times 2=48.88\ m

(a) Acceleration, a=-4\ m/s^2

We need to find the stopping distance, v = 0. It can be calculated using the third equation of motion as :

s=\dfrac{v^2-u^2}{2a}

s=\dfrac{-(24.44)^2}{2\times -4}

s = 74.66 meters

s = 74.66 + 48.88 = 123.54 meters

(b) Acceleration, a=-8\ m/s^2

s=\dfrac{v^2-u^2}{2a}

s=\dfrac{-(24.44)^2}{2\times -8}

s = 37.33 meters

s = 37.33 + 48.88 = 86.21 meters

Hence, this is the required solution.

4 0
3 years ago
A 87.0 kg astronaut is working on the engines of a spaceship that is drifting through space with a constant velocity. The astron
Ket [755]

Answer:

259.62521 seconds

Explanation:

m_1 = Mass of astronaut = 87 kg

m_2 = Mass of wrench = 0.57 kg

v_1 = Velocity of astronaut

v_2 = Velocity of wrench = 22.4 m/s

Here, the linear momentum is conserved

m_1v_1=m_2v_2\\\Rightarrow v_1=\frac{m_2v_2}{m_1}\\\Rightarrow v_1=\frac{0.57\times 22.4}{87}\\\Rightarrow v_1=0.14675\ m/s

Time = Distance / Speed

Time=\frac{38.1}{0.14675}=259.62521\ s

The time taken to reach the ship is 259.62521 seconds

4 0
3 years ago
A small airplane with a wingspan of 18.0 m is flying due north at a speed of 63.6 m/s over a region where the vertical component
choli [55]

Answer:

(a) ε = 1373.8.

(b) The wingtip which is at higher potential.

Explanation:

(a) Finding the potential difference between the airplane wingtips.

Given the parameters

wingspan of the plane is = 18.0m

speed of the plane in north direction is = 70.0m/s

magnetic field of the earth is = 1.20μT

The potential difference is given as:

ε = Blv

where ε = potential difference of wingtips

B = magnetic field of earth

l = wingspan of airplane

v = speed of airplane

ε = 1.2 x 18.0 x 63.6

ε  = 1373.8

(b) Which wingtip is at  higher potential?

The wingtip which is at higher potential.

5 0
3 years ago
Other questions:
  • Parallel perpendicular or neither y=6x-3 y=-1/6x + 7
    14·1 answer
  • What percentage of the world's energy needs is supplied by fossil fuels?
    15·1 answer
  • How deep would you have to drill to reach the center of earth?
    10·1 answer
  • What is newtons first law of motion​
    8·1 answer
  • Why does a small pebble sin in water?
    7·1 answer
  • 20 points!
    10·2 answers
  • Here are the results of the study:
    11·1 answer
  • Which refers to the rate of change in velocity?
    13·1 answer
  • Two people hear a tornado siren, but one listener is 81.9 times farther away from the source of the sound than the other. What i
    12·1 answer
  • In part a, (a) why did you set the frequency of the square wave to 0.40 hz? (b) what would have happened if you had set the freq
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!