Answer:
Explanation:
An inelastic collision is one where 2 masses collide and stick together, moving as a single mass after the collision occurs. When we talk about this type of momentum conservation, the momentum is conserved always, but the kinetic momentum is not (the velocity changes when they collide). Because there is direction involved here, we use vector addition. The picture before the collision has the truck at a mass of 3520 kg moving north at a velocity of 18.5. The truck's momentum, then, is 3520(18.5) = 65100 kgm/s; coming at this truck is a car of mass 1480 kg traveling east at an unknown velocity. The car's momentum, then, is 1480v. The resulting vector (found when you pick up the car vector and stick the initial end of it to the terminal end of the truck's momentum vector) forms the hypotenuse of a right triangle where one leg is 65100 kgm/s, and the other leg is 1480v. Since we already know the final velocity of the 2 masses after the collision, we can use that to find the final momentum, which will serve as the resultant momentum vector in our equation (we'll get there in a sec). The final momentum of this collision is
p = mv and
p = (3520 + 1480)(13.6) so
p = 68000. Final momentum. The equation for this is a take-off of Pythagorean's Theorem and the one used to find the final magnitude of a resultant vector when you first began your vector math in physics. The equation is
which, in words, is
the final momentum after the collision is equal to the square root of the truck's momentum squared plus the car's momentum squared. Filling in:
and
and
and
and
so
v = 13.3 m/s at 72.6°
Well my thinking is that the lighter the slower the water evaporates or the darker the faster becuase dark colors absorb light and allows a lot of heat to be generated or not at all.
B the mass of the solar object determines whether the gravity of the object unless the solar object has Sonic property's such as a neutron star which can be the size of Pluto but have the mass of 900 solar masses
Answer:
ac = 3.92 m/s²
Explanation:
In this case the frictional force must balance the centripetal force for the car not to skid. Therefore,
Frictional Force = Centripetal Force
where,
Frictional Force = μ(Normal Force) = μ(weight) = μmg
Centripetal Force = (m)(ac)
Therefore,
μmg = (m)(ac)
ac = μg
where,
ac = magnitude of centripetal acceleration of car = ?
μ = coefficient of friction of tires (kinetic) = 0.4
g = 9.8 m/s²
Therefore,
ac = (0.4)(9.8 m/s²)
<u>ac = 3.92 m/s²</u>
Answer:
distance - meters
speed - meters/seconds
time - seconds
velocity - meters/seconds
acceleration - meters/seconds²