Answer:
1.7N
Explanation:
Force = kx
Where x = spring compression and
K = spring constant
K =85N/m
x = 2.0cm / 100
= 0.02m
Force = 85 x 0.02
= 1.7N
Answer:
Can't understand the language
Answer:
Al's mass is 102.92 kg
Explanation:
As there are no external forces in the horizontal direction, the horizontal net force must be zero:
As the force is the derivative in time of the momentum, this means that the horizontal momentum is constant:

where the suffix i and f means initial and final respectively.
The initial momentum will be:

But, as they are at rest, initially


So, this means:

We know that the have an combined mass of 195 kg:
.
so:
.





Now, we can use the values:


where the minus sign appears as they are moving at opposite directions


and this is the Al's mass.
1 mA = 0.001 A
Therefore, 5 mA = 0.001 * 5
=0.005 A
Resistance = voltage / current
= 100 / 0.005
= 20000 ohms
Current = voltage / resistance
= 25 / 20000
= 0.00125 A (or) 1.25 mA
Answer:
Part a)
Moment of inertia of the cylinder is given as

Part B)
Height of the cylinder is of no use here to calculate the inertia
Part C)
Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as 
Explanation:
As we know that the inclined plane is of length L = 3 m
and its inclination is given as 25 degree
so we know that acceleration of center of mass of the cylinder is constant so we will have

so we have

now we know that



Now we have know that final speed of the cylinder due to pure rolling is given as



Part B)
Height of the cylinder is of no use here to calculate the inertia
Part C)
Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as 