Answer:
Number of days needed = 57
Explanation:
Depth of well = 115 feet
Distance traveled in day = 3 feet up
Distance traveled in night = 1 feet down.
Total displacement in 1 day = 3 - 1 = 2 feet up
When the snail reaches 112 feet up, the next 3 feet up motion on day will make it reach the top.
After 56 days the displacement of snail is 112 feet.
On the next day it moves up by 3 feet and reaches out of well.
Number of days needed = 57
What is one effect of steroid abuse in professional sports?
AThey cause athletes to stop training hard incorrect answer
BThey allow some competitors to gain an unfair advantage incorrect answer
CThey cause athletes to stop competing to win incorrect answer
DThey cause athletes to become selfish
Answer:
F = 3.6 kN, direction is 9.6º to the North - East
Explanation:
The force is a vector, so one method to find the solution is to work with the components of the vector as scalars and then construct the resulting vector.
Let's use trigonometry to find the component of the forces, let's use a reference frame where the x-axis coincides with the East and the y-axis coincides with the North.
Wind
X axis
F₁ = 2.50 kN
Tide
cos 30 = F₂ₓ / F₂
sin 30 = F_{2y} / F₂
F₂ₓ = F₂ cos 30
F_{2y} = F₂ sin 30
F₂ₓ = 1.20cos 30 = 1.039 kN
F_{2y} = 1.20 sin 30 = 0.600 kN
the resultant force is
X axis
Fₓ = F₁ₓ + F₂ₓ
Fₓ = 2.50 +1.039
Fₓ = 3,539 kN
F_y = F_{2y}
F_y = 0.600
to find the vector we use the Pythagorean theorem
F =
F =
F = 3,589 kN
the address is
tan θ = F_y / Fₓ
θ = tan⁻¹
θ = tan⁻¹ 0.6 / 3.539
θ = 9.6º
the resultant force to two significant figures is
F = 3.6 kN
the direction is 9.6º to the North - East
The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts