Magnetism is a property of materials that respond at an atomic or subatomic level to an applied magnetic field. For example, the most well known form of magnetism is ferromagnetism such that some ferromagnetic materials produce their own persistent magnetic field. However, all materials are influenced to greater or lesser degree by the presence of a magnetic field. Some are attracted to a magnetic field (paramagnetism); others are repulsed by a magnetic field (diamagnetism); others have a much more complex relationship with an applied magnetic field. Substances that are negligibly affected by magnetic fields are known as non-magnetic substances. They include copper, aluminium, gases, and plastic.
<span>The magnetic state (or phase) of a material depends on temperature (and other variables such as pressure and applied magnetic field) so that a material may exhibit more than one form of magnetism depending on its temperature, etc.
Or
</span><span>If it's a multiple choice question this is the best answer: </span>
<span>A magnetic field surrounds each magnet, which affects other objects with magnetic fields
</span><span>hope this helpsss.
and can you help me as well with two questions if you dont mind
</span>
Answer:
C) 350 m/s N
Explanation:
Velocity is measured in miles per hour or metres per second.
I'd say the answer to this on is d.Facts as they are using the temperatures in the graph and the temperatures are not just estimates
Answer:
W ≅ 292.97 J
Explanation:
1)What is the work done by tension before the block goes up the incline? (On the horizontal surface.)
Workdone by the tension before the block goes up the incline on the horizontal surface can be calculated using the expression;
W = (Fcosθ)d
Given that:
Tension of the force = 62 N
angle of incline θ = 34°
distance d =5.7 m.
Then;
W = 62 × cos(34) × 5.7
W = 353.4 cos(34)
W = 353.4 × 0.8290
W = 292.9686 J
W ≅ 292.97 J
Hence, the work done by tension before the block goes up the incline = 292.97 J